Therapeutic ultrasound was administered to patients suffering from bone fracture with FDA approval. Bone and cartilage are piezoelectric materials. To investigate the effects of piezoelectricity on the cells of chondrogenic lineage, we applied ultrasound stimulation on an AT-cut quartz coverslip to generate electric field fluctuations. The bone-marrow-derived mesenchymal stem cells (BMMSC) and primary chondrocytes were cultured on either glass or quartz coverslips for ultrasound stimulation. The cells were immunofluorescent-labeled for the assessment of cell arrangement and ciliary orientation. Ultrasound and piezoelectricity both stimulate cell migration and disrupt ciliary orientation induced by directional migration. In particular, piezoelectric effects on cell rearrangement can be abolished by the inhibitor specifically targeting atypical Protein kinase C zeta (PKCζ). Our findings shed light on the possibility of cellular modulation by using piezoelectric manipulation. 相似文献
The H1N1 influenza virus causes acute respiratory tract infection, and its clinical symptoms are very similar to those of ordinary influenza. The disease develops rapidly. If the flu is not treated, complications such as pneumonia, respiratory failure, and multiple organ damage can occur, resulting in a high fatality rate. Influenza virus mutates rapidly. At present, there is no specific drug for H1N1, so it is an urgent need for clinical care to find new drugs to treat H1N1.
Materials and methods
The polysaccharide derived from Durvillaea Antarctica green algae has a certain antiviral effect. In this study, the results of CCK-8, apoptosis cycle detection, JC-1 and Western blotting proved that Duvira Antarctic polysaccharide (DAPP) has the ability to inhibit H1N1 infection.
Results
CCK-8 test showed that the DAPP with concentration at 32 μg/mL had no toxicity to MDCK cells. In addition, DAPP reduced cell apoptosis by inhibiting the ERK signaling pathway. Meanwhile, DAPP could increase the expression of STAT3 and significantly inhibited proinflammatory cytokines.
Conclusions
In summary, these results suggested that DAPP may be potential with the ability to resist the H1N1 influenza virus.
To explore the molecular mechanisms of oleanolic acid, two novel photoaffinity probes were synthesized based on the structure-activity relationship reported previously. Their potency were evaluated in an enzyme inhibition assay against rabbit muscle glycogen phosphorylase a (RMGPa), a known target protein of oleanolic acid. The inhibitory activity of probe 2 was only about two-fold less potent than the mother compound oleanolic acid. The photoaffinity labeling experiments were also performed and two proteins were specifically tagged by probe 2. The results suggest that the synthesized probes could be used as powerful tools to isolate and identify the target proteins of oleanolic acid. 相似文献
The enzyme alanine-glyoxylate aminotransferase 1 (AGT) functions to detoxify glyoxylate before it is converted into harmful oxalate. In mammals, mitochondrial targeting of AGT in carnivorous species versus peroxisomal targeting in herbivores is controlled by two signal peptides that correspond to these respective organelles. Differential expression of the mitochondrial targeting sequence (MTS) is considered an adaptation to diet-specific subcellular localization of glyoxylate precursors. Bats are an excellent group in which to study adaptive changes in dietary enzymes; they show unparalleled mammalian dietary diversification as well as independent origins of carnivory, frugivory, and nectarivory. We studied the AGT gene in bats and other mammals with diverse diets and found that the MTS has been lost in unrelated lineages of frugivorous bats. Conversely, species exhibiting piscivory, carnivory, insectivory, and sanguinivory possessed intact MTSs. Detected positive selection in the AGT of ancestral fruit bats further supports adaptations related to evolutionary changes in diet. 相似文献
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set. 相似文献