首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8318篇
  免费   659篇
  国内免费   627篇
  9604篇
  2024年   16篇
  2023年   109篇
  2022年   277篇
  2021年   441篇
  2020年   313篇
  2019年   355篇
  2018年   372篇
  2017年   256篇
  2016年   359篇
  2015年   507篇
  2014年   580篇
  2013年   602篇
  2012年   764篇
  2011年   638篇
  2010年   386篇
  2009年   370篇
  2008年   411篇
  2007年   380篇
  2006年   353篇
  2005年   278篇
  2004年   239篇
  2003年   203篇
  2002年   175篇
  2001年   142篇
  2000年   114篇
  1999年   134篇
  1998年   79篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9604条查询结果,搜索用时 33 毫秒
991.
In prior studies, we demonstrated that 1) CXCL1/KC is essential for NF-κB and MAPK activation and expression of CXCL2/MIP-2 and CXCL5/LPS-induced CXC chemokine in Klebsiella-infected lungs, and 2) CXCL1 derived from hematopoietic and resident cells contributes to host immunity against Klebsiella. However, the role of CXCL1 in mediating neutrophil leukotriene B(4) (LTB(4)), reactive oxygen species (ROS), and reactive nitrogen species (RNS) production is unclear, as is the contribution of these factors to host immunity. In this study, we investigated 1) the role of CXCL1 in LTB(4), NADPH oxidase, and inducible NO synthase (iNOS) expression in lungs and neutrophils, and 2) whether LTB(4) postinfection reverses innate immune defects in CXCL1(-/-) mice via regulation of NADPH oxidase and iNOS. Our results demonstrate reduced neutrophil influx, attenuated LTB(4) levels, and decreased ROS and iNOS production in the lungs of CXCL1(-/-) mice after Klebsiella pneumoniae infection. Using neutrophil depletion and repletion, we found that neutrophils are the predominant source of pulmonary LTB(4) after infection. To treat immune defects in CXCL1(-/-) mice, we intrapulmonarily administered LTB(4). Postinfection, LTB(4) treatment reversed immune defects in CXCL1(-/-) mice and improved survival, neutrophil recruitment, cytokine/chemokine expression, NF-κB/MAPK activation, and ROS/RNS production. LTB(4) also enhanced myeloperoxidase, H(2)O(2,) RNS production, and bacterial killing in K. pneumoniae-infected CXCL1(-/-) neutrophils. These novel results uncover important roles for CXCL1 in generating ROS and RNS in neutrophils and in regulating host immunity against K. pneumoniae infection. Our findings suggest that LTB(4) could be used to correct defects in neutrophil recruitment and function in individuals lacking or expressing malfunctional CXCL1.  相似文献   
992.
Zhou B  Cai Q  Xie Y  Sheng ZH 《Cell reports》2012,2(1):42-51
Neurotrophin signaling is crucial for neuron growth. While the "signaling endosomes" hypothesis is one of the accepted models, the molecular machinery that drives retrograde axonal transport of TrkB signaling endosomes is largely unknown. In particular, mechanisms recruiting dynein to TrkB signaling endosomes have not been elucidated. Here, using snapin deficient mice and gene rescue experiments combined with compartmentalized cultures of live cortical neurons, we reveal that Snapin, as a dynein adaptor, mediates retrograde axonal transport of TrkB signaling endosomes. Such a role is essential for dendritic growth of cortical neurons. Deleting snapin or disrupting Snapin-dynein interaction abolishes TrkB retrograde transport, impairs BDNF-induced retrograde signaling from axonal terminals to the nucleus, and decreases dendritic growth. Such defects were rescued by reintroducing the snapin gene. Our study indicates that Snapin-dynein coupling is one of the primary mechanisms driving BDNF-TrkB retrograde transport, thus providing mechanistic insights into the regulation of neuronal growth and survival.  相似文献   
993.
994.
Callus browning is a typical feature of callus cultures derived from the hypocotyl of Jatropha curcas. Brown callus results in decreased regenerative ability, poor growth and even death. In this study, we investigated the effect of browning on callus morphology and biochemical indices. Light microscopy and scanning electron microscopy showed striking differences in callus morphology. During browning, chlorophylls and carotenoids concentrations decreased steadily. Polyphenol oxidase (PPO) and peroxidase (POD) enzymatic activities patterns were similar during callus culture with a higher activity level at week 3 compared to week 2 or later weeks. Grey relation degree analysis indicated that PPO played a more important role than POD in enzymatic callus browning. Polyacrylamide gel electrophoresis results showed differences between browning and non-browning callus. Gas chromatography–mass spectrometry results showed that saturated and unsaturated fatty acid quantities differed significantly but there was little difference in fatty acid composition between non-browning and browning callus. Differences in 17, 18.4 and 25 kDa protein concentrations were also observed in browning and non-browning callus using sodium dodecyl sulfate–polyacrylamide gel electrophoresis.  相似文献   
995.
996.
Aluminum (Al) toxicity promotes oxidative damage in plants, while nitric oxide (NO) may exert a beneficial effect on Al toxicity condition in soybean. Pretreatment with NO donor sodium nitroprusside (SNP) before soybean exposure to Al significantly reduced Al accumulation and MDA induction in the root apex. Pretreatment with SNP also increased the relative root elongation, chlorophyll content, and activity of the protective enzyme peroxidase compared to Al treatment alone. These results show the effect of exogenously applied NO as a protector against oxidative stress induced by Al. Moreover, the ameliorating effect can be reversed by the addition of NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) in the presence of Al.  相似文献   
997.
Eimeria acervulina 3-1E antigen gene and mature chicken interleukin 15 (mChIL-15) gene were cloned into expression vector pcDNA3.1(+) in different forms, produced DNA vaccine pcDNA3.1-3-1E, and pcDNA3.1-3-1E-linker-mChIL-15 co-expressing E. acervulina 3-1E gene and mChIL-15 gene, respectively. The expression of objective gene in vitro was detected by indirect fluorescent antibody technique and immunohistochemistry. The two DNA vaccines were administered by intramuscular leg injection. An animal challenge experiment was carried out to evaluate the immune protective efficacy of the vaccines. The results indicated that DNA vaccines were successfully constructed and the expression of objective gene could be detected in vitro. The animal experimental results showed that both DNA vaccines could provide partial protection against homologous challenge in chickens. The chimeric DNA vaccine, pcDNA3.1-3-1E-linker-mChIL-15, could significantly increase oocyst decrease ratio, reduce the average lesion score in the duodenum, improve body weight gain, and increase anti-coccidial index (ACI) compared to the DNA vaccine pcDNA3.1-3-1E. Taken together, these results demonstrate ChIL-15 enhance the immunogenicity of 3-1E DNA vaccine, and co-expression of cytokine and optimized surface antigen of Eimeria may be a promising method to enhance immunogenicity of DNA vaccines in poultry.  相似文献   
998.
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics.With well-developed algorithms and computational tools for mass spectrometry (MS)1 data analysis, peptide-based bottom-up proteomics has gained considerable popularity in the field of systems biology (19). Nevertheless, the bottom-up approach is suboptimal for the analysis of protein posttranslational modifications (PTMs) and sequence variants as a result of protein digestion (10). Alternatively, the protein-based top-down proteomics approach analyzes intact proteins, which provides a “bird''s eye” view of all proteoforms (11), including those arising from sequence variations, alternative splicing, and diverse PTMs, making it a disruptive technology for the comprehensive analysis of proteoforms (1224). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for processing data from bottom-up proteomics experiments, the data analysis tools in top-down proteomics remain underdeveloped.The initial step in the analysis of top-down proteomics data is deconvolution of high-resolution mass and tandem mass spectra. Thorough high-resolution analysis of spectra by horn (THRASH), which was the first algorithm developed for the deconvolution of high-resolution mass spectra (25), is still widely used. THRASH automatically detects and evaluates individual isotopomer envelopes by comparing the experimental isotopomer envelope with a theoretical envelope and reporting those that score higher than a user-defined threshold. Another commonly used algorithm, MS-Deconv, utilizes a combinatorial approach to address the difficulty of grouping MS peaks from overlapping isotopomer envelopes (26). Recently, UniDec, which employs a Bayesian approach to separate mass and charge dimensions (27), can also be applied to the deconvolution of high-resolution spectra. Although these algorithms assist in data processing, unfortunately, the deconvolution results often contain a considerable amount of misassigned peaks as a consequence of the complexity of the high-resolution MS and MS/MS data generated in top-down proteomics experiments. Errors such as these can undermine the accuracy of protein identification and PTM localization and, thus, necessitate the implementation of visual components that allow for the validation and manual correction of the computational outputs.Following spectral deconvolution, a typical top-down proteomics workflow incorporates identification, quantitation, and characterization of proteoforms; however, most of the recently developed data analysis tools for top-down proteomics, including ProSightPC (28, 29), Mascot Top Down (also known as Big-Mascot) (30), MS-TopDown (31), and MS-Align+ (32), focus almost exclusively on protein identification. ProSightPC was the first software tool specifically developed for top-down protein identification. This software utilizes “shotgun annotated” databases (33) that include all possible proteoforms containing user-defined modifications. Consequently, ProSightPC is not optimized for identifying PTMs that are not defined by the user(s). Additionally, the inclusion of all possible modified forms within the database dramatically increases the size of the database and, thus, limits the search speed (32). Mascot Top Down (30) is based on standard Mascot but enables database searching using a higher mass limit for the precursor ions (up to 110 kDa), which allows for the identification of intact proteins. Protein identification using Mascot Top Down is fundamentally similar to that used in bottom-up proteomics (34), and, therefore, it is somewhat limited in terms of identifying unexpected PTMs. MS-TopDown (31) employs the spectral alignment algorithm (35), which matches the top-down tandem mass spectra to proteins in the database without prior knowledge of the PTMs. Nevertheless, MS-TopDown lacks statistical evaluation of the search results and performs slowly when searching against large databases. MS-Align+ also utilizes spectral alignment for top-down protein identification (32). It is capable of identifying unexpected PTMs and allows for efficient filtering of candidate proteins when the top-down spectra are searched against a large protein database. MS-Align+ also provides statistical evaluation for the selection of proteoform spectrum match (PrSM) with high confidence. More recently, Top-Down Mass Spectrometry Based Proteoform Identification and Characterization (TopPIC) was developed (http://proteomics.informatics.iupui.edu/software/toppic/index.html). TopPIC is an updated version of MS-Align+ with increased spectral alignment speed and reduced computing requirements. In addition, MSPathFinder, developed by Kim et al., also allows for the rapid identification of proteins from top-down tandem mass spectra (http://omics.pnl.gov/software/mspathfinder) using spectral alignment. Although software tools employing spectral alignment, such as MS-Align+ and MSPathFinder, are particularly useful for top-down protein identification, these programs operate using command line, making them difficult to use for those with limited knowledge of command syntax.Recently, new software tools have been developed for proteoform characterization (36, 37). Our group previously developed MASH Suite, a user-friendly interface for the processing, visualization, and validation of high-resolution MS and MS/MS data (36). Another software tool, ProSight Lite, developed recently by the Kelleher group (37), also allows characterization of protein PTMs. However, both of these software tools require prior knowledge of the protein sequence for the effective localization of PTMs. In addition, both software tools cannot process data from liquid chromatography (LC)-MS and LC-MS/MS experiments, which limits their usefulness in large-scale top-down proteomics. Thus, despite these recent efforts, a multifunctional software platform enabling identification, quantitation, and characterization of proteins from top-down spectra, as well as visual validation and data correction, is still lacking.Herein, we report the development of MASH Suite Pro, an integrated software platform, designed to incorporate tools for protein identification, quantitation, and characterization into a single comprehensive package for the analysis of top-down proteomics data. This program contains a user-friendly customizable interface similar to the previously developed MASH Suite (36) but also has a number of new capabilities, including the ability to handle complex proteomics datasets from LC-MS and LC-MS/MS experiments, as well as the ability to identify unknown proteins and PTMs using MS-Align+ (32). Importantly, MASH Suite Pro also provides visualization components for the validation and correction of the computational outputs, which ensures accurate and reliable deconvolution of the spectra and localization of PTMs and sequence variations.  相似文献   
999.
脑内芳香化酶表达的定位、调控及意义   总被引:7,自引:0,他引:7  
芳香化酶催化雄激素转化为雌激素,在脑内其表达主要见于下丘脑与边缘系统的神经元内,星形胶质细胞可能也表达芳香化酶。芳香化酶基因表达是由多个组织特异性的启动子驱动的。脑内雌激素的有效浓度取决于脑局部芳香化酶的表达水平,由此产生的雌激素能调节突触发生和树突棘密度、神经营养因子和/或其受体的表达,保护脑细胞免受包括β-淀粉样蛋白在内的多种神经毒素的影响,并可显著改善老年性痴呆(AD)导致的学习和记忆下降及认知缺陷。  相似文献   
1000.
Rubber trees (Hevea brasiliensis) are susceptible to low temperature and therefore are only planted in the tropical regions. In the past few decades, although rubber trees have been successfully planted in the northern margin of tropical area in China, they suffered from cold injury during the winter. To understand the physiological response under cold stress, we isolated a C-repeat binding factor 1 (CBF1) gene from the rubber tree. This gene (HbCBF1) was found to respond to cold stress but not drought or ABA stress. The corresponding HbCBF1 protein showed CRT/DRE binding activity in gel shift experiment. To further characterize its molecular function, the HbCBF1 gene was overexpressed in Arabidopsis. The HbCBF1 over expression (OE) line showed enhanced cold resistance and relatively slow dehydration, and the expression of Arabidopsis CBF pathway downstream target genes, e.g. AtCOR15a and AtRD29a, were significantly activated under non-acclimation condition. These data suggest HbCBF1 gene is a functional member of the CBF gene family, and may play important regulation function in rubber tree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号