首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5257篇
  免费   393篇
  国内免费   504篇
  6154篇
  2024年   10篇
  2023年   72篇
  2022年   175篇
  2021年   308篇
  2020年   205篇
  2019年   232篇
  2018年   251篇
  2017年   180篇
  2016年   233篇
  2015年   314篇
  2014年   391篇
  2013年   391篇
  2012年   486篇
  2011年   435篇
  2010年   276篇
  2009年   270篇
  2008年   279篇
  2007年   257篇
  2006年   203篇
  2005年   156篇
  2004年   161篇
  2003年   138篇
  2002年   95篇
  2001年   77篇
  2000年   80篇
  1999年   73篇
  1998年   45篇
  1997年   48篇
  1996年   47篇
  1995年   42篇
  1994年   29篇
  1993年   28篇
  1992年   26篇
  1991年   17篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1979年   8篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有6154条查询结果,搜索用时 15 毫秒
61.
Parental age at first pregnancy is increasing worldwide. The offspring of aged father has been associated with higher risk of several neuropsychiatric disorders, such as schizophrenia and autism, but the underlying mechanism remains elusive. Here we report that advanced paternal age in mice alters the profile of transfer RNA‐derived small RNAs (tsRNAs). Injection of sperm tsRNAs from aged male mice into zygotes induced anxiety‐like behaviors in F1 males. RNA sequencing of the cerebral cortex and hippocampus of those F1 male mice altered the gene expression of dopaminergic synapse and neurotrophin. tsRNAs from aged male mice injection also altered the neuropsychiatry‐related gene expression in two‐cell and blastocyst stage embryos. More importantly, the sperm tsRNA profile changes significantly during aging in human. The up‐regulated sperm tsRNA target genes were involved in neurogenesis and nervous system development. These results suggest that aging‐related changes of sperm tsRNA may contribute to the intergenerational transmission of behavioral traits.  相似文献   
62.
63.
Shen  He  Wu  Shuyu  Chen  Xi  Xu  Bai  Ma  Dezun  Zhao  Yannan  Zhuang  Yan  Chen  Bing  Hou  Xianglin  Li  Jiayin  Cao  Yudong  Fu  Xianyong  Tan  Jun  Yin  Wen  Li  Juan  Meng  Li  Shi  Ya  Xiao  Zhifeng  Jiang  Xingjun  Dai  Jianwu 《中国科学:生命科学英文版》2020,63(12):1879-1886
Science China Life Sciences - Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we...  相似文献   
64.
Oral squamous cell carcinoma (OSCC) is aggressive accompanied with poor prognosis. We previously isolated the most invasive cells resembling the invasive tumour front by microfluidic technology and explored their differentially expressed microRNAs (miRNAs) in our previous work. Here, we verified the miR‐29b‐3p as a guarder that suppressed migration and invasion of OSCC cells and was down‐regulated in the most invasive cells. Besides that, the invasion suppression role of miR‐29b‐3p was achieved through the IL32/AKT pathway. Thus, miR‐29b‐3p and IL32 might serve as therapeutic targets for blocking the progression and improving the outcome of OSCC.  相似文献   
65.
Chikungunya virus (CHIKV) is a mosquito‐transmitted alphavirus, and its infection can cause long‐term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti‐CHIKV monoclonal antibody (mAb) produced in wild‐type (WT) and glycoengineered (?XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ?XFT carried a single N‐glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N‐glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ?XFT plant‐produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ?XFT‐produced mAbs. This is the first report of the efficacy of plant‐produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.  相似文献   
66.
Li SJ  Bai JJ  Cai L  Ma DM  Du FF 《Mitochondrial DNA》2012,23(2):92-99
The largemouth bass belongs to the family Centrarchidae, which includes two subspecies: the northern subspecies, Micropterus salmoides salmoides, and the Florida subspecies, Micropterus salmoides floridanus. In this study, the complete mitochondrial genomes of the two subspecies were sequenced, and their genetic differences were identified. The mitogenomes of M. s. salmoides and M. s. floridanus are 16,486 and 16,479?bp in length, respectively. The two subspecies consisted of 37 genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA), which are typical for vertebrate mtDNA. Phylogenetic analysis provided statistical support for the monophyly of the family Centrarchidae. Comparison of the two subspecies' mitogenomes revealed a relatively high number (450) of single nucleotide polymorphisms (SNPs) in protein-coding genes. We characterized SNPs in the partial cytochrome c oxidase subunit 1 gene of different individuals from three cultured populations, one wild northern subspecies population, and one wild Florida subspecies population. Twenty-eight SNPs were fixed with alternative nucleotides in the two subspecies, which could be used for differentiating them. Based on this gene, phylogenetic tree and genetic distance analyses supported that cultured largemouth bass in China belongs to the northern subspecies.  相似文献   
67.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   
68.
Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field(e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.  相似文献   
69.
70.

Background

Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATLL), a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells.

Methods

Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential.

Results

Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor) induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145.

Conclusions

WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号