首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21016篇
  免费   1907篇
  国内免费   2619篇
  2024年   60篇
  2023年   315篇
  2022年   756篇
  2021年   1307篇
  2020年   902篇
  2019年   1162篇
  2018年   1034篇
  2017年   710篇
  2016年   997篇
  2015年   1411篇
  2014年   1697篇
  2013年   1755篇
  2012年   2034篇
  2011年   1845篇
  2010年   1109篇
  2009年   1008篇
  2008年   1115篇
  2007年   957篇
  2006年   838篇
  2005年   681篇
  2004年   663篇
  2003年   575篇
  2002年   459篇
  2001年   326篇
  2000年   293篇
  1999年   234篇
  1998年   196篇
  1997年   154篇
  1996年   136篇
  1995年   118篇
  1994年   97篇
  1993年   86篇
  1992年   101篇
  1991年   62篇
  1990年   52篇
  1989年   57篇
  1988年   34篇
  1987年   33篇
  1986年   31篇
  1985年   32篇
  1984年   14篇
  1983年   13篇
  1982年   16篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Calcium-activated nucleotidase 1 (CANT1, belongs to the apyrase family, is widely expressed in various organs. However, the biological function of CANT1 remains poorly explored. In this study, we aimed to investigate the expression profile and functions of CANT1 in clear cell renal cell carcinoma (ccRCC). Our data show that the protein level of CANT1 was significantly higher in tumor tissues than in adjacent normal tissues. CANT1 silencing suppressed cell proliferation, migration, and invasion obviously in 769-P and 786-O cells, arrested cell cycle in S phase and promoted apoptosis in 769-P cells. In conclusion, the present study shows the different expression mode of CANT1 in human ccRCC tumor tissue and adjacent normal tissue, denotes the function of CANT1 in ccRCC cells and provides potential molecular mechanisms and pathways of CANT1 antitumor function in ccRCC.  相似文献   
962.
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.  相似文献   
963.
The resistance against tamoxifen therapy has become one of the major obstacles in the clinical treatment of breast cancer. Nicotinamide phosphoribosyltransferase (NAMPT) is an essential enzyme catalyzing nicotinamide adenine dinucleotide biosynthesis and is important for tumor metabolism. The study here sought to explore the effect of NAMPT on breast cancer survival with tamoxifen conditioning. We found that NAMPT was highly expressed in breast cancer cells compared with normal mammary epithelial cells. Inhibition of NAMPT by FK866 inhibited cell viability and aggravated apoptosis in cancer cells treated with 4-hydroxytamoxifen. NAMPT overexpression upregulated 14-3-3ζ expression. Knockdown of 14-3-3ζ reduced cell survival and promoted apoptosis. Activation of Akt signaling, rather than ERK1/2 pathway, is responsible for 14-3-3ζ regulation by NAMPT overexpression. Furthermore, NAMPT overexpression led to PKM2 accumulation in the cell nucleus and could be dampened by 14-3-3ζ inhibition. In addition, NAMPT overexpression promoted xenografted tumor growth and apoptosis in nude mice, while 14-3-3ζ inhibition attenuated its effect. Collectively, our data demonstrate that NAMPT contributes to tamoxifen resistance through regulation of 14-3-3ζ expression and PKM2 translocation.  相似文献   
964.
965.
Pyroptosis, a type of programmed cell death mediated by gasdermin, is characterized by the swelling and rupture of cells, release of cellular contents and a strong inflammatory response, which is critical for controlling microbial infection. Pattern recognition receptors recognize the intracellular and extracellular pathogenic microbial components and stimulate the organism's inflammatory response by activating the pyroptosis signaling pathway and releasing interleukin-1β (IL-1β), IL-18, and other inflammatory factors to promote pathogen clearance and prevent infection. In the process of continuous evolution, pathogens have developed multiple strategies to modulate the occurrence of pyroptosis and thus enhance their ability to induce disease; that is, the competition between host cells and pathogens controls the occurrence of pyroptosis. Competition can directly affect tissue inflammation outbreaks and even alter cell survival. Studies have shown that various bacterial infections, including Shigella flexneri, Salmonella, Listeria monocytogenes, and Legionella pneumophila, can lead to pyroptosis. Pyroptosis is associated with the occurrence and development of various diseases caused by microbial infection, and the identification of molecules related to the pyroptosis signaling pathway may provide new drug targets for the treatment of related diseases. This study reviews the molecular mechanisms of pyroptosis and the role of pyroptosis in microbial infection-related diseases.  相似文献   
966.
967.
Bile duct cancer (BDC), also known as cholangiocarcinoma, is a highly desmoplastic cancer with a growth pattern characterized by periductal extension and infiltration. Studies have suggested that microRNAs (miRNAs) play an important role in BDC progression. Here we aim at investigating the effects of miR-329 on BDC development, focusing especially on epithelial-to-mesenchymal transition (EMT) in vitro and lymph node metastasis in vivo. Expression microarrays associated with BDC tissues were collected and differentially expressed genes were analyzed, followed by miRNA target prediction and verification. The role miR-329 played in BDC was examined using gain-of-function and loss-of-function methods. The expressions of miR-329, laminin subunit beta 3 (LAMB3), and EMT markers, in addition to cell proliferation, migration, and invasion were evaluated. Furthermore, nude mice models of BDC were established to observe tumor growth and metastatic lymph nodes. The LAMB3 was identified as an upregulated gene based on the GSE77984 and GSE45001 microarray analysis. LAMB3 was also predicted and confirmed to be a target gene of miR-329 by dual-luciferase reporter assay. Through further cell experiments, the EMT process was reversed, cell proliferation, invasion, and migration were suppressed, when miR-329 was upregulated. Furthermore, in vivo experiments exhibited that the overexpression of miR-329 inhibited tumor growth and the number of metastatic lymph nodes. This study provides in vivo and in vitro evidence that miR-329 inhibits BDC progression through translational repression of LAMB3. Therefore, the obtained results may aid as an experimental basis for improving prognosis of BDC.  相似文献   
968.
In this study, we aimed to investigate the potential correlation between rs13281615/rs2910164 polymorphisms and the prognosis of colon cancer (CC). Taqman was utilized to genotype the rs13281615/rs2910164 polymorphisms in recruited subjects. Kaplan–Meier survival curves were calculated to study the prognostic values of different genotypes of rs13281615/rs2910164 polymorphisms. Real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays were conducted to establish a potential signaling pathway underlying the role of rs13281615/rs2910164 polymorphisms, whereas bioinformatics analysis and luciferase reporter assays were performed to identify plasmacytoma variant translocation 1 (PVT1) and cyclooxygenase-2 (COX2) as targets of microRNA-146a (miR-146a). No significant difference was observed in respect to clinical characteristics among subjects with different genotypes. However, patients genotyped as GG/CC + GC showed the lowest chance of survival, whereas patients of GA + AA/GG genotype showed the highest chance of survival. Moreover, the relative expressions of PVT1, prostaglandin E2 (PGE2), and COX2 were the lowest and the relative expression of miR-146a was the highest in GA + AA/GG subjects, validating the roles of PVT1, miR-146a, and COX2 in CC. In addition, both PVT1 and COX2 were identified as virtual targets of miR-146a, and the luciferase activities of cells cotransfected with wild-type PVT1/COX2 and miR-146a mimics were significantly reduced. Moreover, the presence of PVT1 decreased the level of miR-146a whereas increasing the messenger RNA and protein levels of COX2, thus establishing a PVT1/miR-146a/COX2 signaling pathway underlying the pathogenesis of CC. The presence of rs13281615 G > A polymorphism on PVT1 and the rs2910164 C > G polymorphism on miR-146a contributes to a favorable prognosis in CC patients via modulating the activity of the PVT1/miR-146a/COX2 signaling pathway.  相似文献   
969.
Urinary incontinence (UI) is known as a distressing condition particularly among older adults, and negatively associated with health-related quality of life in both males and females. Prelamin A accumulation has been found in all progeroid laminopathies and is obviously linked to cell and organism aging. Therefore, this study was expected to investigate the effect of prelamin A on detrusor on UI. Prelamin A expression in clinical and animal samples was detected. To investigate the degree of prelamin A accumulation and detrusor calcification/aging, the detrusor cells were subcultured separately into low and high passage. The low-passage subculture cells were treated with transfection of overexpressed prelamin A plasmid, and transfection of overexpressed prelamin A plasmid and application of farnesyl transferase inhibitor (FTIs) H-9279, respectively. Zmpste24, Icmt and lamin A/C expression were detected to explore how prelamin A affected detrusor calcification/aging. Prelamin A was overexpressed in aged detrusor cells, indicating prelamin A expression was positively related to the age of subjects. The degree of prelamin A accumulation and detrusor calcification/aging was higher in aged rats and high passage subculture cells. Zmpste24, Icmt and lamin A/C were poorly expressed in cells transfected with overexpressed prelamin A, as well as cell proliferation activity decreased and calcium deposition and apoptotic rate increased. Furthermore, we also found that the effect of overexpressed prelamin A was lost when cells were treated with H-9279. These findings provide evidence that prelamin A overexpression impairs degradation of its farnesylated form, thus causing prelamin A accumulation which induces detrusor calcification/aging in UI.  相似文献   
970.
MicroRNA (miR) plays an integral role in cardiovascular diseases. M-iR-423-5p is aberrantly expressed in patients with myocardial infarction and heart failure. The aim of the present study was to study the roles and mechanisms of miR-423-5p in hypoxia/reoxygenation (H/R) mediated cardiomyocytes injury. H9C2 cells were transfected with negative control, miR-423-5p mimic, and inhibitor for 48 hr, followed by exposed to H/R condition. Cell apoptosis rate, caspase 3/7 activities, Bax and cleaved-caspase 3 (c-caspase 3) protein levels were assayed by flow cytometry, Caspase-Glo 3/7 Assay kit, western blot analysis, respectively. Furthermore, the mitochondrial membrane potential, adenosine triphosphate (ATP) content, reactive oxygen species (ROS) production, and Drp1 expression were also investigated. Furthermore, the dual-luciferase reporter assay was used to evaluate the relationship between miR-423-5p and Myb-related protein B (MYBL2). The roles of miR-423-5p in wnt/β-catenin were assessed by western blot analysis. The results revealed that H/R triggered miR-423-5p expression. Overexpression of miR-423-5p promoted cardiomyocyte apoptosis, enhanced the activities of caspase 3/7, upregulated the expression of Bax and c-caspase 3. miR-423-5p upregulation caused the loss of mitochondrial membrane potential and the reduction of ATP content, the augment of ROS production and Drp1 expression. However, the opposite trends were observed upon suppression of miR-423-5p. In addition, miR-423-5p could target the 3′ untranslated region of MYBL2. miR-423-5p depletion led to the activation of the wnt/β-catenin signaling pathway via targeting MYBL2. Knockdown of MYBL2 was obviously reversed the roles of miR-423-5p in apoptosis and mitochondrial dysfunction. Taken together, miR-423-5p suppression reduced H/R-induced cardiomyocytes injury through activation of the wnt/β-catenin signaling pathway via targeting MYBL2 in cardiomyocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号