全文获取类型
收费全文 | 56993篇 |
免费 | 18295篇 |
国内免费 | 6387篇 |
专业分类
81675篇 |
出版年
2024年 | 186篇 |
2023年 | 673篇 |
2022年 | 1440篇 |
2021年 | 2311篇 |
2020年 | 3524篇 |
2019年 | 5293篇 |
2018年 | 5113篇 |
2017年 | 5106篇 |
2016年 | 5376篇 |
2015年 | 5907篇 |
2014年 | 6040篇 |
2013年 | 6468篇 |
2012年 | 4778篇 |
2011年 | 4257篇 |
2010年 | 4862篇 |
2009年 | 3480篇 |
2008年 | 2586篇 |
2007年 | 2024篇 |
2006年 | 1764篇 |
2005年 | 1642篇 |
2004年 | 1435篇 |
2003年 | 1244篇 |
2002年 | 1085篇 |
2001年 | 959篇 |
2000年 | 818篇 |
1999年 | 631篇 |
1998年 | 331篇 |
1997年 | 283篇 |
1996年 | 241篇 |
1995年 | 201篇 |
1994年 | 171篇 |
1993年 | 141篇 |
1992年 | 177篇 |
1991年 | 141篇 |
1990年 | 118篇 |
1989年 | 130篇 |
1988年 | 89篇 |
1987年 | 90篇 |
1986年 | 91篇 |
1985年 | 66篇 |
1984年 | 60篇 |
1983年 | 57篇 |
1982年 | 51篇 |
1981年 | 23篇 |
1980年 | 20篇 |
1979年 | 22篇 |
1977年 | 18篇 |
1976年 | 13篇 |
1972年 | 10篇 |
1965年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Zeina Daher Ghislaine Recorbet Benoît Valot Frank Robert Thierry Balliau Sophie Potin Benoît Schoefs Eliane Dumas‐Gaudot 《Proteomics》2010,10(11):2123-2137
Despite the recognized importance of non‐photosynthetic plastids in a wide array of plant processes, the root plastid proteome of soil‐grown plants still remains to be explored. In this study, we used a protocol allowing the isolation of Medicago truncatula root plastids with sufficient protein recovery and purity for their subsequent in‐depth analysis by nanoscale capillary LC‐MS/MS. Besides providing the first picture of a root plastid proteome, the results obtained highlighted the identification of 266 protein candidates whose functional distribution mainly resembled that of wheat endosperm amyloplasts and tobacco proplastids together with displaying major differences to those reported for chloroplasts. Most of the identified proteins have a role in nucleic acid‐related processes (16%), carbohydrate (15%) and nitrogen/sulphur (12%) metabolisms together with stress response mechanisms (10%). It is noteworthy that BLAST searches performed against the proteins reported in different plastidomes allowed detecting 30 putative root plastid proteins for which homologues were previously unsuspected as plastid‐located, most of them displaying a common putative role in participating in the plant cell responses against abiotic and/or biotic stresses. Taken together, the data obtained provide new insights into the functioning of root plastids and reinforce the emerging idea for an important role of these organelles in sustaining plant defence reactions. 相似文献
103.
Small ubiquitin-related modifier SUMO-3 is a member of a growing family of ubiquitin-like proteins (Ubls). So far, four isoforms of SUMO have been identified in humans. It is generally known that SUMO modification regulates protein localization and activity. Previous structure and function studies have been mainly focused on SUMO-1. The sequence of SUMO-3 is 46% identical with that of SUMO-1; nevertheless, functional heterogeneity has been found between the two homologues. Here we report the solution structure of SUMO-3 C47S (residues 14-92) featuring the beta-beta-alpha-beta-beta-alpha-beta ubiquitin fold. Structural comparison shows that SUMO-3 C47S resembles ubiquitin more than SUMO-1. On the helix-sheet interface, a strong hydrophobic interaction contributes to formation of the globular and compact fold. A Gly-Gly motif at the C-terminal tail, extending away from the core structure, is accessible to enzymes and substrates. In vivo, SUMO modification proceeds via a multistep pathway, and Ubc9 plays an indispensable role as the SUMO conjugating enzyme (E2) in this process. To develop a better understanding of SUMO-3 conjugation, the Ubc9 binding surface on SUMO-3 C47S has been detected by chemical shift perturbation using NMR spectroscopy. The binding site mainly resides on the hydrophilic side of the beta-sheet. Negatively charged and hydrophobic residues of this region are highly or moderately conserved among SUMO family members. Notably, the negatively charged surface of SUMO-3 C47S is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. This work indicates dissimilarities between SUMO-3 and SUMO-1 in tertiary structure and provides insight into the specific interactions of SUMO-3 with its modifying enzyme. 相似文献
104.
Johannes A Hofberger Beifei Zhou Haibao Tang Jonathan DG Jones M Eric Schranz 《BMC genomics》2014,15(1)
Background
Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.Results
To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.Conclusion
By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users. 相似文献105.
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity. 相似文献
106.
Annelie Eklund Sarron Randall‐Demllo Sergey Shabala Nuri Guven Anthony L Cook Rajaraman D Eri 《Cell biochemistry and function》2013,31(7):603-611
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
107.
108.
109.
110.