全文获取类型
收费全文 | 16313篇 |
免费 | 1599篇 |
国内免费 | 2139篇 |
专业分类
20051篇 |
出版年
2024年 | 61篇 |
2023年 | 281篇 |
2022年 | 662篇 |
2021年 | 1047篇 |
2020年 | 733篇 |
2019年 | 902篇 |
2018年 | 814篇 |
2017年 | 587篇 |
2016年 | 758篇 |
2015年 | 1114篇 |
2014年 | 1299篇 |
2013年 | 1328篇 |
2012年 | 1535篇 |
2011年 | 1456篇 |
2010年 | 885篇 |
2009年 | 767篇 |
2008年 | 899篇 |
2007年 | 747篇 |
2006年 | 630篇 |
2005年 | 591篇 |
2004年 | 535篇 |
2003年 | 499篇 |
2002年 | 401篇 |
2001年 | 278篇 |
2000年 | 243篇 |
1999年 | 202篇 |
1998年 | 139篇 |
1997年 | 102篇 |
1996年 | 91篇 |
1995年 | 87篇 |
1994年 | 63篇 |
1993年 | 60篇 |
1992年 | 48篇 |
1991年 | 40篇 |
1990年 | 37篇 |
1989年 | 29篇 |
1988年 | 23篇 |
1987年 | 20篇 |
1986年 | 13篇 |
1985年 | 15篇 |
1984年 | 8篇 |
1983年 | 7篇 |
1982年 | 7篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1978年 | 1篇 |
1959年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
82.
iQPR技术处理污水是一项新型尖端的技术,此技术可以成功降低污水乃至受到污染的地下水中的各种污染指标。但是,iQPR技术处理污水尤其是地下水是否存在潜在的生物安全性问题有待于进一步研究。因此,为评估iQPR技术对生物安全性的影响,本研究首先分析了三种不同iQPR法处理水的水质成分;其次系统研究了iQPR水对SD鼠在个体水平、组织水平和病理形态学损伤的研究。研究表明:iQPR处理的水质成分较对照组普通饮用水好,在个体组织水平检测未见异常,尽管其中一组iQPR处理水造成了SD鼠的脾小体增大,但是可能的原因是水处理环节存在微生物污染现象,因此,初步认定此技术未造成SD大鼠的个体损伤。本研究为揭示iQPR处理的水对生物体的安全性评价提供一个理论依据。 相似文献
83.
A new isolate of Aspergillus sp. hydrogenated the γ,δ-double bond of securinine (143 mg l−1) to give 14,15-dihydrosecurinine at over 98% (w/w) yield after 8 h. It also hydrogenated the C11(13) double bond of 3-hydroxy-1(10),3,11(13)-guaiatriene-12,6-olide-2-one (HGT) (200 mg l−1) to give 3-hydroxy-1(10),3-guaiadiene-12,6-olide-2-one with over 98% (w/w) conversion after 24 h. 相似文献
84.
Wang D Li Z Schoen SR Messing EM Wu G 《Biochemical and biophysical research communications》2004,313(2):320-326
MET is a receptor protein tyrosine kinase for hepatocyte growth factor, a multifunctional cytokine controlling cell growth, morphogenesis, and motility. In our previous study, RanBPM/RanBP9, whose name originated from its ability to interact with Ran, was identified as a MET-interacting protein. RanBPM/RanBP9 activates the Ras/Erk signaling pathway by serving as an adaptor protein of MET to recruit Sos. In this study, we identify a protein sharing a high amino acid sequence identity with RanBPM/RanBP9, especially in its SPRY domain, the region responsible for MET binding. This protein lacks the N-terminal poly-proline and poly-glutamine (Poly-PQ) stretch present in RanBPM/RanBP9 and has less homology with RanBPM/RanBP9 in its mid-region. We subsequently named this protein RanBP10 after demonstrating its interaction with Ran. We show that, like RanBPM/RanBP9, RanBP10 interacts with the tyrosine kinase domain of MET via its SPRY domain and these two proteins can compete with each other to bind to MET. Interestingly, unlike RanBPM/RanBP9, overexpression of RanBP10 cannot induce Erk1/2 phosphorylation and serum response element-luciferase (SRE-LUC) reporter gene expression. More importantly, co-transfection of RanBPM/RanBP9 and RanBP10 significantly represses SRE-LUC reporter gene expression induced by overexpression of RanBPM/RanBP9. Additional binding assays demonstrate that RanBP10 fails to interact with Sos, which explains its inability to activate the Ras/Erk pathway. Furthermore, we show that the N-terminus of RanBPM/RanBP9 with the Poly-PQ stretch is required for recruiting Sos and a truncated RanBPM/RanBP9 lacking this region fails to recruit Sos, indicating that the functional difference between RanBP10 and RanBPM/RanBP9 lies in their sequence difference in their N-termini. 相似文献
85.
Huo Y Guo X Li H Xu H Halim V Zhang W Wang H Fan YY Ong KT Woo SL Chapkin RS Mashek DG Chen Y Dong H Lu F Wei L Wu C 《The Journal of biological chemistry》2012,287(25):21492-21500
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. 相似文献
86.
87.
88.
The increasing demands for new lead compounds in pharmaceutical and agrochemical industries have driven scientists to search for new bioactive natural products. Marine microorganisms are rich sources of novel, bioactive secondary metabolites, and have attracted much attention of chemists, pharmacologists, and molecular biologists. This mini-review mainly focuses on macrolactins, a group of 24-membered lactone marine natural products, aiming at giving an overview on their sources, structures, biological activities, as well as their potential medical applications. 相似文献
89.
Hai-Long Wang Tie-E Zhang Li-Tian Yin Min Pang Li Guan Hong-Li Liu Jian-Hong Zhang Xiao-Li Meng Ji-Zhong Bai Guo-Ping Zheng Guo-Rong Yin 《PloS one》2014,9(9)
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis. 相似文献
90.
Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P. 相似文献