首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2673篇
  免费   239篇
  国内免费   404篇
  2024年   8篇
  2023年   51篇
  2022年   106篇
  2021年   219篇
  2020年   171篇
  2019年   178篇
  2018年   163篇
  2017年   124篇
  2016年   152篇
  2015年   232篇
  2014年   242篇
  2013年   238篇
  2012年   270篇
  2011年   223篇
  2010年   130篇
  2009年   112篇
  2008年   126篇
  2007年   90篇
  2006年   76篇
  2005年   64篇
  2004年   34篇
  2003年   42篇
  2002年   39篇
  2001年   25篇
  2000年   23篇
  1999年   22篇
  1998年   16篇
  1997年   21篇
  1996年   22篇
  1995年   8篇
  1994年   13篇
  1993年   3篇
  1992年   10篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   9篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有3316条查询结果,搜索用时 15 毫秒
151.
为构建便捷的马铃薯(Solanum tuberosum)耐荫性综合评价体系并发掘耐荫种质, 以35个马铃薯品种(系)为实验材料, 测定块茎膨大期遮荫下植株叶片叶绿素含量、光合能力和叶绿素荧光等光合参数及收获后块茎单株产量和淀粉含量等指标。根据耐荫系数, 利用主成分分析法、隶属函数法、聚类分析法和逐步回归分析法进行综合评价。通过主成分分析将马铃薯耐荫性相关的13个单项光合指标转换为6个综合指标, 代表了全部信息的87.51%。以此计算各种质的隶属函数值, 并以主成分的贡献率进行加权, 最终获得所用材料耐荫性的综合评价值(D值)。根据D值聚类分析结果将35个马铃薯分为4类, 其中Eshu10和Lishu6分别为耐荫性最强和最弱的品种。通过逐步回归分析建立了马铃薯耐荫性评价数学模型: D=0.060+0.106Gs+0.214qP+0.143NPQ。同时, 用该评价体系鉴定为耐荫性强的品种(系)在遮荫后其产量和/或淀粉含量等指标减幅均低于耐荫性弱的种质, 表明该评价体系可用于快速评价和预测马铃薯种质的耐荫性。  相似文献   
152.
Auxin is as an efficient initiator and regulator of cell fate during somatic embryogenesis (SE), but the molecular mechanisms and regulating networks of this process are not well understood. In this report, we analysed SE process induced by Leafy cotyledon1‐like 1 (GhL1L1), a NF‐YB subfamily gene specifically expressed in embryonic tissues in cotton. We also identified the target gene of GhL1L1, and its role in auxin distribution and cell fate specification during embryonic development was analysed. Overexpression of GhL1L1 accelerated embryonic cell formation, associated with an increased concentration of IAA in embryogenic calluses (ECs) and in the shoot apical meristem, corresponding to altered expression of the auxin transport gene GhPIN1. By contrast, GhL1L1‐deficient explants showed retarded embryonic cell formation, and the concentration of IAA was decreased in GhL1L1‐deficient ECs. Disruption of auxin distribution accelerated the specification of embryonic cell fate together with regulation of GhPIN1. Furthermore, we showed that PHOSPHATASE 2AA2 (GhPP2AA2) was activated by GhL1L1 through targeting the G‐box of its promoter, hence regulating the activity of GhPIN1 protein. Our results indicate that GhL1L1 functions as a key regulator in auxin distribution to regulate cell fate specification in cotton and contribute to the understanding of the complex process of SE in plant species.  相似文献   
153.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   
154.
Jiao  Wenjuan  Li  Lin  Fan  Penghui  Zhao  Di  Li  Bing  Rong  Hui  Zhang  Xia 《Food biophysics》2019,14(2):142-153
Food Biophysics - The effect of xanthan gum on the freeze-thaw stability of wheat gluten was evaluated during a 60-day storage period at −18 °C with thawing every...  相似文献   
155.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   
156.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm?2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm?2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.  相似文献   
157.
Aims We aim to investigate variations in the resorption efficiencies of 10 mineral nutrients [i.e. nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), zinc (Zn), aluminum (Al), iron (Fe) and copper (Cu)] in leaves of desert shrubs and to explore effects of aridity on resorption efficiency of these nutrients.  相似文献   
158.
We examined the genetic divergence of Platycerus hongwonpyoi Imura & Choe, 1989 in South Korea using the nuclear wingless (Wg) gene, internal transcribed spacer (ITS) region and mitochondrial cytochrome oxidase subunit I (COI) gene. We found no variation in Wg or ITS. Based on COI, P. hongwonpyoi was split into four well defined and one weakly supported clades, which were inferred to have diverged 2.11–1.33 Ma. The Platycerus hongwonpyoi population size seems to have decreased during the past several tens of thousands of years. The divergence times of major clades of P. hongwonpyoi were comparable with those involved in the speciation of certain Japanese species. Frequent overlapping of different clades at the same sites suggests the occurrence of secondary gene flow following differentiation in South Korea. In conclusion, the genus Platycerus underwent strikingly different divergence patterns in South Korea compared with Japan according to the disparate topographies of these two geographical areas.  相似文献   
159.
In this study, we investigated the microbially mediated transformation of labile Synechococcus-derived DOM to RDOM using a 60-day experimental incubation system. Three phases of TOC degradation activity (I, II and III) were observed following the addition of Synechococcus-derived DOM. The phases were characterized by organic carbon consumption rates of 8.77, 1.26 and 0.16 μmol L−1 day−1, respectively. Excitation emission matrix analysis revealed the presence of three FDOM components including tyrosine-like, fulvic acid-like, and humic-like molecules. The three components also exhibited differing biological availabilities that could be considered as labile DOM (LDOM), semi-labile DOM (SLDOM) and RDOM, respectively. DOM molecular composition was also evaluated using FT-ICR MS. Based on differing biological turnover rates and normalized intensity values, a total of 1704 formulas were identified as candidate LDOM, SLDOM and RDOM molecules. Microbial transformation of LDOM to RDOM tended to proceed from high to low molecular weight, as well as from molecules with high to low double bond equivalent (DBE) values. Relatively higher aromaticity was observed in the formulas of RDOM molecules relative to those of LDOM molecules. FDOM components provide valuable proxy information to investigate variation in the bioavailability of DOM. These results suggest that coordinating fluorescence spectroscopy and FT-ICR MS of DOM, as conducted here, is an effective strategy to identify and characterize LDOM, SLDOM and RDOM molecules in incubation experiments emulating natural systems. The results described here provide greater insight into the metabolism of phytoplankton photosynthate by heterotrophic bacteria in marine environments.  相似文献   
160.
天然的木质纤维素材料含有纤维素、半纤维素和木质素等成分。降解天然木质纤维素底物时,需要木质纤维素酶共同作用。近年在木质纤维素酶的相互协同作用方面的研究引起人们的关注,成为一个新的研究热点,文中使用两个不同的共表达载体pETDuet-1和pRSFDuet-1,在大肠杆菌中共表达了白蚁及其肠道微生物来源的β-葡萄糖苷酶、内切β-1,4-葡聚糖酶、漆酶和木聚糖酶这4种木质纤维素酶,经过SDS-PAGE分析得到了与理论值一致的蛋白条带,同时经过酶活验证,这4种蛋白都具有酶活性。以磷酸处理的微晶纤维素(PASC)为底物,测定了共表达酶粗酶液与单独表达酶混合液的协同作用因子,从还原糖的产量上经计算共表达的粗酶液比单独表达酶的混合液对PASC的降解协同作用提高44%;以滤纸和磷酸处理的玉米芯为底物,测定降解协同作用,分别提高了34%和20%。结果表明,共表达酶的降解效率要高于混合的单组分酶液降解效率的总和。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号