首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10725篇
  免费   788篇
  国内免费   738篇
  2024年   9篇
  2023年   128篇
  2022年   326篇
  2021年   655篇
  2020年   379篇
  2019年   470篇
  2018年   414篇
  2017年   310篇
  2016年   459篇
  2015年   718篇
  2014年   823篇
  2013年   807篇
  2012年   1026篇
  2011年   816篇
  2010年   497篇
  2009年   469篇
  2008年   507篇
  2007年   477篇
  2006年   388篇
  2005年   367篇
  2004年   285篇
  2003年   256篇
  2002年   188篇
  2001年   208篇
  2000年   150篇
  1999年   165篇
  1998年   96篇
  1997年   109篇
  1996年   110篇
  1995年   100篇
  1994年   106篇
  1993年   66篇
  1992年   64篇
  1991年   84篇
  1990年   53篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   24篇
  1984年   14篇
  1983年   17篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
鲎是古老的海洋节肢动物。中华鲎(Tachypleus tridentatus)是世界现存4种鲎中体型最大的一种, 是河口生态系统的标志物种, 同时其血液被用于生产医用检验试剂――鲎试剂。中华鲎的自然地理分布范围相当狭窄, 仅局限于日本濑户内海向南延伸至印度尼西亚爪哇岛北岸以北的太平洋西岸海域, 其中在中国东岸和日本南部海域的历史产量较高。自20世纪50年代以来中华鲎种群数量出现了显著减少, 2019年中华鲎在IUCN红色名录中的濒危等级正式更新为濒危(EN), 明确了中华鲎资源呈现全球性衰退的状态, 究其原因可归纳为鲎生境破坏和过度捕捞两个方面。在开展鲎资源保护的实践工作中, 作者深刻反思当前鲎资源保护在海洋保护区划定、增殖放流及科普和野生动物保护法宣传中存在的问题并提出相应建议, 包括加快完善种群基线数据, 制定标准化种群和生境基线监测指南, 构建科学放流体系等, 以期推进全球范围内的中华鲎资源保护与科学管理。  相似文献   
192.
Identifying seasonal shifts in community assembly for multiple biological groups is important to help enhance our understanding of their ecological dynamics. However, such knowledge on lotic assemblages is still limited. In this study, we used biological traits and functional diversity indices in association with null model analyses to detect seasonal shifts in the community assembly mechanisms of lotic macroinvertebrates and diatoms in an unregulated subtropical river in China. We found that functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) showed seasonal variation for macroinvertebrate and diatom assemblages. Null models suggested that environmental filtering, competitive exclusion, and neutral process were all important community assembly mechanisms for both biological groups. However, environmental filtering had a stronger effect on spring macroinvertebrate assemblages than autumn assemblages, but the effect on diatom assemblages was the same in both seasons. Moreover, macroinvertebrate and diatom assemblages were shaped by different environmental factors. Macroinvertebrates were filtered mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped by altitude, substrate types, and water quality. Therefore, our study showed (a) that different biological assemblages in a river system presented similarities and differences in community assembly mechanisms, (b) that multiple processes play important roles in maintaining benthic community structure, and (c) that these patterns and underlying mechanisms are seasonally variable. Thus, we highlight the importance of exploring the community assembly mechanisms of multiple biological groups, especially in different seasons, as this is crucial to improve the understanding of river community changes and their responses to environmental degradation.  相似文献   
193.
Evaluating how decomposition rates and litter nutrient release of different litter types respond to changes in water conditions is crucial for understanding global carbon and nutrient cycling. However, it is unclear how decreasing water affects litter mixture interactions for the maize–poplar system in arid regions. Here, the responses of the litter decomposition process and litter mixture interactions in the agroforestry system to changes in water conditions (control, light drought, and moderate drought) were tested. Moderate drought significantly decreased the decomposition rate for poplar leaf and mixed litters, and decomposition rate was significantly reduced for maize straw litter in light and moderate drought stress. The mass loss rates of maize straw and mixed litters were significantly higher than that of the poplar leaf litter under drought conditions, but there was no significant difference among the three litter types in the control. There was no interaction between mass loss of the mixed litter in the control and light drought conditions, and the litter mixture interaction showed nonadditive synergistic interactions under moderate drought. In terms of nutrient release, there was also no interaction between litter mixture with nitrogen and carbon, but there was antagonistic interaction with potassium release under the light drought condition. Our results demonstrate that drought conditions can lead to decreasing decomposition rate and strong changes in the litter mixture interactions from additive effects to nonadditive synergistic effects in moderate drought. Moreover, light drought changed the mixture interaction from an additive effect to an antagonistic interaction for potassium release.  相似文献   
194.
目的探讨国产西罗莫司与原研品对移植宿主外周血中免疫细胞的影响效果。方法体外实验:人膀胱癌T24细胞体外培养,分别加入国产西罗莫司和原研品,CKK-8法检测并比较细胞增殖活性受抑制的情况。体内实验:建立小鼠异位心脏移植模型,设立对照无手术组(对照组)、移植无治疗组(Tx组)、移植+国产西罗莫司组(Tx+YXK组)、移植+原研品组(Tx+RAPA组)。观察移植心脏搏动情况,受者脾脏的流式细胞学检测,以及脾脏及移植物中免疫细胞浸润的病理检查。流式细胞检测树突状细胞(DC),CD8+细胞和调节性T细胞(Treg),病理组织学检测及免疫组化染色比较两组免疫细胞浸润情况。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,两两比较采用LSD-t检验。结果体外实验结果显示,国产西罗莫司与原研品对T24细胞活力影响的差异无统计学意义(P>0.05)。体内实验结果显示,Tx组移植心脏于第7天停止搏动,Tx+YXK组和Tx+RAPA组在第10天心脏搏动仍有力、节律正常。(1)脾脏流式细胞检测显示,与对照组、Tx组比较,Tx+RAPA组、Tx+YXK组CD11c+I-A+CD86+DC细胞(15.88±4.73、22.90±3.86比4.51±1.57、5.40±2.54)、CD8+淋巴细胞数量(6.32±0.98、6.75±1.34比3.03±1.12、3.23±0.97)均降低,而Tx+RAPA组CD4+CD25+Foxp3+阳性细胞数量(15.06±3.42比7.87±1.95,10.88±2.08)升高(P均<0.05)。Tx+YXK组和Tx+RAPA组3种免疫细胞数量差异均无统计学意义(P>0.05)。(2)移植心脏病理免疫细胞组化染色灰度分析,Tx组、Tx+YXK组和Tx+RAPA组CD4,CD8,IDO和CD11b数量差异无统计学意义(P>0.05),与Tx组比较,Tx+RAPA组和Tx+YXK组CD11c(25143.52±3525.12比12936.30±766.94、14240.60±3124.67)、Foxp3阳性细胞浸润数量(500.78±238.33比46.05±68.16、49.22±25.82)降低(P均<0.05),Tx+YXK组和Tx+RAPA组比较差异无统计学意义(P>0.05)。(3)模型动物脾脏病理免疫细胞组化染色灰度分析,Tx组CD 4和CD8阳性细胞浸润数量较Tx+YXK组和Tx+RAPA组少,但差异无统计学意义(P>0.05),Tx+YXK组和Tx+RAPA组比较,各种细胞染色的IOD值差异均无统计学意义。结论使用国产西罗莫司与原研品两种药物后受者移植心脏和脾脏中的细胞浸润变化一致;在体外对细胞增殖、移植后抗排斥作用和体内免疫细胞的影响表现均一致。  相似文献   
195.
196.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   
197.
Radiation-induced hair cell injury is detrimental for human health but the underlying mechanism is not clear. MicroRNAs (miRNAs) have critical roles in various types of cellular biological processes. The present study investigated the role of miR-222 in the regulation of ionizing radiation (IR)-induced cell injury in auditory cells and its underlying mechanism. Real-time PCR was performed to identify the expression profile of miR-222 in the cochlea hair cell line HEI-OC1 after IR exposure. miRNA mimics or inhibitor-mediated up- or down-regulation of indicated miRNA was applied to characterize the biological effects of miR-222 using MTT, apoptosis and DNA damage assay. Bioinformatics analyses and luciferase reporter assays were applied to identify an miRNA target gene. Our study confirmed that IR treatment significantly suppressed miR-222 levels in a dose-dependent manner. Up-regulation of miR-222 enhances cell viability and alleviated IR-induced apoptosis and DNA damage in HEI-OC1 cells. In addition, BCL-2-like protein 11 (BCL2L11) was validated as a direct target of miR-222. Overexpression of BCL2L11 abolished the protective effects of miR-222 in IR-treated HEI-OC1 cells. Moreover, miR-222 alleviated IR-induced apoptosis and DNA damage by directly targeting BCL2L11. The present study demonstrates that miR-222 exhibits protective effects against irradiation-induced cell injury by directly targeting BCL2L11 in cochlear cells.  相似文献   
198.
Chen  Chunli  Xie  Xiangyun  Li  Xue 《Glycoconjugate journal》2021,38(4):517-525

Four neutral polysaccharides (ESBP1-1, ESBP1-2, ESBP2-1 and ESBP3-1) were successfully purified from the water extracted crude polysaccharides of Erythronium sibiricum bulbs through the combination of DEAE Sepharose CL-6B and Sephadex G-100 chromatography; their average molecular weights were 1.3?×?104, 1.7?×?104, 9.4?×?105 and 4.1?×?105 Da, respectively. Monosaccharide component analysis indicated that ESBP1-1 and ESBP1-2 were mainly composed of glucose (Glc). ESBP2-1 was composed of Glc, galactose (Gal) and arabinose, with a molar ratio of 24.3:1.1:1, whereas ESBP3-1 comprised Glc and Gal at a molar ratio of 14.8:1. In-vitro study showed that all of the four polysaccharides were able to considerably promote the proliferation and neutral red phagocytosis of RAW 264.7 macrophage cell. They could also stimulate the production of the cell lines’ secretory molecules [nitric oxide, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)] in a dose-dependent manner. However, ESBP1-2 was not included in IL-1β. Overall, these results suggested that polysaccharides from E. sibiricum bulbs can be developed as immunomodulatory ingredients for complementary medicines or functional foods. However, further animal or clinical studies are required.

  相似文献   
199.
Molecular and Cellular Biochemistry - This study investigated the effect of isoflurane on the proliferation of squamous cervical cancer cells, with focus on histone deacetylase 6 that is closely...  相似文献   
200.
Liu  Chaowu  Yang  Deguang  Wang  Hong  Hu  Shengwei  Xie  Xiaofei  Zhang  Li  Jia  Hongling  Qi  Qi 《Molecular and cellular biochemistry》2021,476(12):4245-4263

Kawasaki disease (KD) causes cardiovascular system injury in children. However, the pathogenic mechanisms of KD have not been well defined. Recently, strong correlation between aberrant microRNAs and KD nosogenesis has been revealed. A role of microRNA-197-3p (miR-197-3p) in the pathogenesis of KD is identified in the present study. Cell proliferation assay showed human coronary artery endothelial cells (HCAECs) were suppressed by serum from KD patients, which was correlated with high levels of miR-197-3p in both KD serum and HCAECs cultured with KD serum. The inhibition of HCAECs by miR-197-3p was confirmed by cells expressing miR-197-3p mimic and miR-197-3p inhibitor. Comparative proteomics analysis and Ingenuity Pathway Analysis (IPA) revealed TIMP3 as a potential target of miR-197-3p, which was demonstrated by western blot and dual-luciferase reporter assays. Subsequently, by detecting the endothelium damage markers THBS1, VWF, and HSPG2, the role of miR-197-3p/TIMP3 in KD-induced damage to HCAECs was confirmed, which was further validated by a KD mouse model in vivo. The expressions of miR-197-3p and its target, TIMP3, are dramatically variational in KD serum and HCAECs cultured with KD serum. Increased miR-197-3p induces HCAECs abnormal by restraining TIMP3 expression directly. Hence, dysregulation of miR-197-3p/TIMP3 expression in HCAECs may be an important mechanism in cardiovascular endothelium injury in KD patients, which offers a feasible therapeutic target for KD treatment.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号