首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11550篇
  免费   836篇
  国内免费   843篇
  13229篇
  2024年   24篇
  2023年   171篇
  2022年   402篇
  2021年   730篇
  2020年   422篇
  2019年   507篇
  2018年   448篇
  2017年   341篇
  2016年   501篇
  2015年   773篇
  2014年   897篇
  2013年   873篇
  2012年   1101篇
  2011年   893篇
  2010年   537篇
  2009年   503篇
  2008年   555篇
  2007年   505篇
  2006年   412篇
  2005年   391篇
  2004年   302篇
  2003年   263篇
  2002年   192篇
  2001年   210篇
  2000年   151篇
  1999年   168篇
  1998年   97篇
  1997年   111篇
  1996年   112篇
  1995年   101篇
  1994年   108篇
  1993年   65篇
  1992年   65篇
  1991年   86篇
  1990年   53篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   15篇
  1985年   23篇
  1984年   14篇
  1983年   17篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.  相似文献   
52.
4-benzylquinolines 5, based on a series of isoquinolines 1, were prepared and tested as inhibitors of the IGF/IGFBP-3 complex based on their ability to displace IGF-I from its binding to IGF-binding protein-3. SAR studies on the 6,7-dihydroxy moiety of the quinoline 5a showed that the catecol moiety could be replaced with other functional groups. Computational modeling of the 5a/mini-IGFBP-5 complex revealed the possible binding site of 5a on IGFBP-5.  相似文献   
53.
Super-paramagnetic microbeads are widely used for cell isolation. Evaluation of the binding affinity of microbeads to cells using optical microscopy has been limited by its small scope. Here, magnetic property of microbeads was first investigated by using synchrotron radiation (SR) in-line x-ray phase contrast imaging (PCI). The cell line mouse LLC (Lewis lung carcinoma) was selected for cell adhesion studies. Targeted microbeads were prepared by attaching anti-VEGFR2 (vascular endothelial growth factor receptor-2) antibody to the shell of the microbeads. The bound microbeads were found to better adhere to LLC cells than unbound ones. PCI dynamically and clearly showed the magnetization and demagnetization of microbeads in PE-50 tube. The cells incubated with different types of microbeads were imaged by PCI, which provided clear and real-time visualization of the cell isolation. Therefore, PCI might be considered as a novel and efficient tool for further cell isolation studies.  相似文献   
54.
55.
A FGLamide allatostatin neuropeptide mimic ( H17 ) is a potential insect growth regulator which inhibits the production of juvenile hormone by the corpora allata. To find more evidence to reveal the structure–activity relationships of the Phe3 residue in the C‐terminal conserved pentapeptide and search for novel analogs with high activity, a series of Phe3 residue‐modified analogs were designed and synthesized using H17 as the lead compound. Bioassay using juvenile hormone (JH) production by corpora allata of the cockroach Diploptera punctata indicated that analogs 4 , 11 , and 13 showed strong ability to inhibit JH production in vitro, with IC50 of 38.5, 22.5, and 26 nM, respectively. As well, the activity of analog 2 (IC50: 89.5 nM) proved roughly equivalent to that of H17 . Based on the primary structure–activity relationships of Phe3 residue, we suggest that for analogs containing six‐membered aromatic rings, removing the methylene group of Phe3 or an o‐halogen or p‐halogen‐substituted benzene ring could increase the ability to inhibit biosynthesis of JH. This study will be useful for the design of new allatostatin analogs for insect management. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
56.
The Na+-K+--ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, Na+-K+--ATPase is engaged in assembly of multiple protein complexes that transmit signals to different intracellular compartments. The signaling function of the enzyme appears to have been acquired through the evolutionary incorporation of many specific binding motifs that interact with proteins and ligands. In some cell types the signaling Na+ --ATPase and its protein partners are compartmentalized in coated pits (i.e., caveolae) the plasma membrane. Binding of ouabain to the signaling Na+-K+--ATPase activates the cytoplasmic tyrosine kinase Src, resulting in the formation of an active "binary receptor" that phosphorylates and assembles other proteins into different signaling modules. This in turn activates multiple protein kinase cascades including mitogen-activated protein kinases and protein kinase C isozymes in a cell-specific manner. It also increases mitochondrial production of reactive oxygen species (ROS)and regulates intracellular calcium concentration. Crosstalk among the activated pathways eventually results in changes in the expression of a number of genes. Although ouabain stimulates hypertrophic growth in cardiac myocytes and proliferation in smooth muscle cells, it also induces apoptosis in many malignant cells. Finally, the signaling function of the enzyme is also pivotal to ouabain-induced nongenomic effects on cardiac myocytes.  相似文献   
57.
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies.  相似文献   
58.
Human cystathionine β-synthase (CBS) is a unique pyridoxal 5′-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ∼2- to ∼500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H2S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H2S-generating reactions catalyzed by CBS.  相似文献   
59.
Liu B  Li P  Li X  Liu C  Cao S  Chu C  Cao X 《Plant physiology》2005,139(1):296-305
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.  相似文献   
60.
Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15’s anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15’s specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.

Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight in rodents and nonhuman primates. This study reveals that the small molecule Camptothecin induces endogenous GDF15, suppressing food intake and reducing body weight in obese mice, suggesting a promising candidate for anti-obesity treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号