首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75768篇
  免费   5590篇
  国内免费   4782篇
  2024年   99篇
  2023年   900篇
  2022年   2078篇
  2021年   4057篇
  2020年   2628篇
  2019年   3238篇
  2018年   3173篇
  2017年   2299篇
  2016年   3259篇
  2015年   4817篇
  2014年   5547篇
  2013年   5987篇
  2012年   7029篇
  2011年   6166篇
  2010年   3714篇
  2009年   3340篇
  2008年   3726篇
  2007年   3360篇
  2006年   2910篇
  2005年   2384篇
  2004年   1959篇
  2003年   1654篇
  2002年   1401篇
  2001年   1230篇
  2000年   1219篇
  1999年   1121篇
  1998年   663篇
  1997年   655篇
  1996年   666篇
  1995年   616篇
  1994年   543篇
  1993年   376篇
  1992年   569篇
  1991年   435篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
本文报道了在正廿面体病毒衣壳中,当蛋白结构亚单位以“三聚体”的形式聚集在单位三角形(?)时,其亚单位的种类数应等于该病毒的三角形剖分数值。  相似文献   
992.
1990~1991年的研究结果表明,FGR 1000~3000ppm 4月中旬处理水涨龙眼,对提高果实座果数有明显效果,两年呈一致结果。高浓度(3000ppm)处理,1990年及1991年的座果数比对照分别增加1.38倍和1.07倍(P≤0.05),具有显著的保果效应。FGR各处理对龙眼果实品质及结果期间的夏延秋梢生长发育两年均未见不良影响。  相似文献   
993.
Z Yao  H Liu    M A Valvano 《Journal of bacteriology》1992,174(23):7500-7508
Most of the Shigella flexneri O-specific serotypes result from O-acetyl and/or glucosyl groups added to a common O-repeating unit of the lipopolysaccharide (LPS) molecule. The genes involved in acetylation and/or glucosylation of S. flexneri LPS are physically located on lysogenic bacteriophages, whereas the rfb cluster contains the biosynthesis genes for the common O-repeating unit (D.A.R. Simmons and E. Romanowska, J. Med. Microbiol. 23:289-302, 1987). Using a cosmid cloning strategy, we have cloned the rfb regions from S. flexneri 3a and 2a. Escherichia coli K-12 containing plasmids pYS1-5 (derived from S. flexneri 3a) and pEY5 (derived from S. flexneri 2a) expressed O-specific LPS which reacted immunologically with S. flexneri polyvalent O antiserum. However, O-specific LPS expressed in E. coli K-12 also reacted with group 6 antiserum, indicating the presence of O-acetyl groups attached to one of the rhamnose components of the O-repeating unit. This was confirmed by measuring the amounts of acetate released from purified LPS samples and also by the chemical removal of O-acetyl groups, which abolished group 6 reactivity. The O-acetylation phenotype was absent in an E. coli strain with an sbcB-his-rfb chromosomal deletion and could be restored upon conjugation of F' 129, which carries sequences corresponding to a portion of the deleted region. Our data demonstrate that E. coli K-12 strains possess a novel locus which directs the O acetylation of LPS and is located in the sbcB-rfb region of the chromosomal map.  相似文献   
994.
995.
The COOH-terminal tail domain of the neurofilament polypeptide M from rat nervous tissue contains approximately six molecules of phosphate. We report here that protein kinases in a crude cytoskeleton preparation of rat nervous tissue phosphorylated a set of tryptic peptides of M similar (but not identical) to those phosphorylated by living dorsal root ganglion cells in culture. Using these phosphopeptides as markers, we purified these same peptides from rat spinal cord and identified six specific phosphorylation sites in M by enzymatic and chemical criteria. These sites, serines 502, 506, 536, 606, 608, and 666, are all located in the COOH-terminal tail domain. Four are embedded in the repeated motif KSP whereas two are within variants of this motif, KSD and ESP. All of the sites that were preceded by lysine were resistant to alkaline phosphatase prior to modification of the lysine with citraconic anhydride. The identification of these sites should aid in investigations of the function of the phosphorylation of this protein and provides criteria for identifying the relevant kinases.  相似文献   
996.
IgE-binding protein (epsilon BP) was originally identified by virtue of its affinity for IgE. It is now known to be a beta-galactoside-binding lectin with the characteristic of an S-type carbohydrate recognition domain. The protein is composed of two domains: the amino-terminal domain consisting of tandem repeats and the carboxyl-terminal domain containing sequences shared by other S-type carbohydrate recognition domains. The amino-terminal domain also contains a number of potential recognition sites for collagenase cleavage. In this study, human epsilon BP was first expressed in Escherichia coli, and the carboxyl-terminal domain (epsilon BP-C) was then generated by collagenase digestion of epsilon BP. By equilibrium dialysis, the association constants of epsilon BP and epsilon BP-C for lactose were found to be similar (6.0 +/- 0.70) x 10(4) M-1 and (4.7 +/- 0.27) x 10(4) M-1, respectively. Both polypeptides contain only one lactose-binding site/molecule. By an assay involving binding of 125I-labeled epsilon BP or epsilon BP-C to solid phase IgE, and inhibition of this binding by saccharides, it was determined that epsilon BP-C retains the saccharide specificity of epsilon BP. Importantly, although unlabeled epsilon BP-C inhibited the binding of the radiolabeled epsilon BP to IgE, unlabeled epsilon BP caused increased binding to IgE, suggesting self-association among epsilon BP molecules. Oligomeric structures resulting from self-association of epsilon BP were confirmed by chemical cross-linking studies. Furthermore, epsilon BP possesses hemagglutination activity on rabbit erythrocytes, whereas epsilon BP-C lacks such activity. Based on these results, we propose a structural model for multivalency of epsilon BP: dimerization or oligomerization of epsilon BP occurs through intermolecular interaction involving the amino-terminal domain.  相似文献   
997.
The soluble methane monooxygenase (MMO) system, consisting of reductase, component B, and hydroxylase (MMOH), catalyzes NADH and O2-dependent monooxygenation of many hydrocarbons. MMOH contains 2 mu-(H or R)oxo-bridged dinuclear iron clusters thought to be the sites of catalysis. Although rapid NADH-coupled turnover requires all three protein components, three less complex systems are also functional: System I, NADH, O2, reductase, and MMOH; System II, H2O2 and oxidized MMOH; System III, MMOH reduced nonenzymatically by 2e- and then exposed to O2 (single turnover). All three systems give the same products, suggesting a common reactive oxygen species. However, the distribution of products observed for most substrates that are hydroxylated in more than one position is different for each system. For several of these substrates, addition of component B to Systems I, II, or III causes the product distributions to shift dramatically. These shifts result in identical product distributions for Systems I and III in which MMOH passes through the 2e- reduced state ([Fe(II).Fe(II)]) during catalysis. In contrast, System II (in which MMOH probably does not become reduced) generally gives a unique product distribution. It is proposed that changes in MMOH structure occurring upon diiron cluster reduction and/or component complex formation cause substrates to be presented differently to the activated oxygen species. Kinetic studies show that component B strongly activates System I and, in most cases, strongly deactivates System II. The effect of component B on product distribution of System I (and III) occurs at less than 5% of the MMOH concentration, while nearly stoichiometric concentrations are required to maximize the rate of System I. This shows that component B has at least two roles in catalysis. EPR monitored titration of reduced MMOH ([Fe(II).Fe(II)]) with component B suggests that the effect of substoichiometric component B on product distribution is due to hysteresis in the MMOH conformational changes.  相似文献   
998.
999.
The domain of thrombomodulin that binds to the anion-binding exosite of thrombin was identified by comparing the binding of fragments of thrombomodulin to thrombin with that of Hirugen, a 12-residue peptide of hirudin that is known to bind to the anion-binding exosite of thrombin. Three soluble fragments of thrombomodulin, containing (i) the six repeated growth factor-like domains of thrombomodulin (GF1-6), (ii) one-half of the second through the sixth growth factor-like repeats (GF2.5-6), or (iii) the fifth and sixth such domains (GF5-6), were examined. Hirugen was a competitive inhibitor for either GF1-6 or GF2.5-6 stimulation of thrombin activation of protein C. GF5-6, which binds to thrombin without altering its ability to activate protein C, competed with fluorescein-labeled Hirugen for binding to thrombin. Therefore, all three thrombomodulin fragments, each of which lacked the chondroitin sulfate moiety, competed with Hirugen for binding to thrombin. To determine whether GF5-6 and Hirugen were binding to overlapping sites on thrombin or were interfering allosterically with each other's binding to thrombin, the effects of each thrombomodulin fragment and of Hirugen on the active site conformation of thrombin were compared using two different approaches: fluorescence-detected changes in the structure of the active site and the hydrolysis of chromogenic substrates. The GF5-6 and Hirugen peptides affected these measures of active site conformation very similarly, and hence GF5-6 and Hirugen contact residues on the surface of thrombin that allosterically alter the active site structure to a similar extent. Full-length thrombomodulin and GF1-6 alter the active site structure to comparable extents, but the amidolytic activity of thrombin complexed to thrombomodulin or GF1-6 differs significantly from that of thrombin complexed to GF5-6 or Hirugen. Taken together, these results indicate that the GF5-6 domain of thrombomodulin binds to the anion-binding exosite of thrombin. Furthermore, the binding of GF5-6 to the anion-binding exosite alters thrombin specificity, as evidenced by GF5-6-dependent changes in both the kcat and Km of synthetic substrate hydrolysis by thrombin. The contact sites on thrombin for the GF4 domain and the chondroitin sulfate moiety of thrombomodulin are still unknown.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号