首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15905篇
  免费   1407篇
  国内免费   1689篇
  2024年   29篇
  2023年   196篇
  2022年   540篇
  2021年   876篇
  2020年   675篇
  2019年   762篇
  2018年   723篇
  2017年   534篇
  2016年   683篇
  2015年   1015篇
  2014年   1183篇
  2013年   1299篇
  2012年   1552篇
  2011年   1298篇
  2010年   811篇
  2009年   772篇
  2008年   834篇
  2007年   705篇
  2006年   615篇
  2005年   565篇
  2004年   405篇
  2003年   410篇
  2002年   366篇
  2001年   246篇
  2000年   215篇
  1999年   242篇
  1998年   134篇
  1997年   150篇
  1996年   140篇
  1995年   120篇
  1994年   119篇
  1993年   88篇
  1992年   96篇
  1991年   74篇
  1990年   82篇
  1989年   63篇
  1988年   58篇
  1987年   43篇
  1986年   50篇
  1985年   50篇
  1984年   33篇
  1983年   21篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
221.
Chronic pancreatitis (CP), characterized by pancreatic fibrosis, is a recurrent, progressive and irreversible disease. Activation of the pancreatic stellate cells (PSCs) is considered a core event in pancreatic fibrosis. In this study, we investigated the role of hydrogen peroxide‐inducible clone‐5 (Hic‐5) in CP. Analysis of the human pancreatic tissue samples revealed that Hic‐5 was overexpressed in patients with CP and was extremely low in healthy pancreas. Hic‐5 was significant up‐regulated in the activated primary PSCs independently from transforming growth factor beta stimulation. CP induced by cerulein injection was ameliorated in Hic‐5 knockout (KO) mice, as shown by staining of tissue level. Simultaneously, the activation ability of the primary PSCs from Hic‐5 KO mice was significantly attenuated. We also found that the Hic‐5 up‐regulation by cerulein activated the NF‐κB (p65)/IL‐6 signalling pathway and regulated the downstream extracellular matrix (ECM) genes such as α‐SMA and Col1a1. Therefore, we determined whether suppressing NF‐κB/p65 alleviated CP by treating mice with the NF‐κB/p65 inhibitor triptolide in the cerulein‐induced CP model and found that pancreatic fibrosis was alleviated by NF‐κB/p65 inhibition. These findings provide evidence for Hic‐5 as a therapeutic target that plays a crucial role in regulating PSCs activation and pancreatic fibrosis.  相似文献   
222.
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.  相似文献   
223.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   
224.
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone‐type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein‐induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF‐κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti‐inflammatory and anti‐fibrotic therapeutic agent for CP.  相似文献   
225.
Formononetin is a natural isoflavone compound found mainly in Chinese herbal medicines such as astragalus and red clover. It is considered to be a typical phytooestrogen. In our previous experiments, it was found that formononetin has a two‐way regulatory effect on endothelial cells (ECs): low concentrations promote the proliferation of ECs and high concentrations have an inhibitory effect. To find a specific mechanism of action and provide a better clinical effect, we performed a structural transformation of formononetin and selected better medicinal properties for formononetin modifier J1 and J2 from a variety of modified constructs. The MTT assay measured the effects of drugs on human umbilical vein endothelial cell (HUVEC) activity. Scratch and transwell experiments validated the effects of the drugs on HUVEC migration and invasion. An in vivo assessment effect of the drugs on ovariectomized rats. Long‐chain non‐coding RNA for EWSAT1, which is abnormally highly expressed in HUVEC, was screened by gene chip, and the effect of the drug on its expression was detected by PCR after the drug was applied. The downstream factors and their pathways were analysed, and the changes in the protein levels after drug treatment were evaluated by Western blot. In conclusion, the mechanism of action of formononetin, J1 and J2 on ECs may be through EWSAT1‐TRAF6 and its downstream pathways.  相似文献   
226.
Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation‐induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti‐inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial‐mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial‐mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation‐induced lung injury via inhibiting epithelial‐mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation‐induced lung injury.  相似文献   
227.
Numerous studies have demonstrated that thioredoxin-interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL-1β, IL-18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP-1 and macrophages/foam cells. Furthermore, Transwell assay and co-cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP-1 or the adhesion of THP-1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP-1 cells and expressions of NLRP3, IL-18 and IL-1β. Oppositely, knock-down TXNIP inhibited the migration and adhesion of THP-1 and expressions of NLRP3, IL-18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.  相似文献   
228.
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas, c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.  相似文献   
229.
Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during the sodium storage reaction remain a confusing topic. Here, a novel hypercrosslinked polymerization approach is demonstrated to fabricate pyrrole/thiophene hypercrosslinked microporous copolymer and further give porous carbonaceous materials with accurately regulated N/S dual doping corresponding to starting feeding ratios. Significantly, the N doping contributes to the conductivity and surface wettability, while the S doping is bridged to build stable active sites, which can be electrochemically converted into mercaptan anions via faraday reaction and further enhancing reversible capacities. Meanwhile, the abundant S doping can also conduce to the expanded interlayer spacing to shorten the ions diffusion distance, thus optimizing the reaction kinetic. As a result, the N0.2S0.8‐micro‐dominant porous carbon delivers the highest reversible capacity of 521 mAh g?1 at 100 mA g?1 and excellent cyclic stability over 2000 cycles at 2000 mA g?1 with a capacity decay of 0.0145 mAh g?1 per cycle. This work is anticipated to provide an in‐depth understanding of capacitance contribution and illuminate the heteroatomic phase transformation during sodium storage reactions for doping carbonaceous anodes.  相似文献   
230.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号