首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2633篇
  免费   184篇
  国内免费   160篇
  2024年   10篇
  2023年   28篇
  2022年   65篇
  2021年   154篇
  2020年   107篇
  2019年   107篇
  2018年   94篇
  2017年   78篇
  2016年   127篇
  2015年   153篇
  2014年   182篇
  2013年   220篇
  2012年   225篇
  2011年   209篇
  2010年   128篇
  2009年   98篇
  2008年   125篇
  2007年   122篇
  2006年   99篇
  2005年   78篇
  2004年   79篇
  2003年   64篇
  2002年   65篇
  2001年   42篇
  2000年   37篇
  1999年   30篇
  1998年   17篇
  1997年   23篇
  1996年   19篇
  1995年   17篇
  1994年   12篇
  1993年   12篇
  1992年   24篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   13篇
  1987年   11篇
  1986年   12篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1980年   5篇
  1975年   4篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有2977条查询结果,搜索用时 125 毫秒
111.
112.
113.
Coastal wetland restoration can be complex and expensive, so knowing long‐term consequences makes it important to inform decisions about if, when, and where to conduct restoration. We determined temporal changes in land gain and loss in receiving basins and adjacent reference areas for two diversions of the Mississippi River in south Louisiana (Davis Pond and Caernarvon initiated in 1991 and 2002, respectively). Water from both diversions went into receiving basins with vegetated areas as did the adjoining reference areas. The results from two different types of satellite imagery analyses demonstrate a net land loss after diversions began. The results were confirmed for the Caernarvon diversion using a before–after/control–impact analysis of independently collected data over a larger area of the estuary. These results are consistent with an analysis of land gain and loss after a natural levee break on the Mississippi River in 1973. The positive influences of adding new sediments were apparently counter‐balanced by other factors, and consistent with the conclusion from other studies indicating that increased nutrient supply and flooding are, by themselves, negative influences on marsh health. Modeling the ecosystem effects of diversions can be calibrated and tested using landscape‐scale analyses like this to understand the chronic and delayed effects, including the unintended consequences. Basing the legitimacy of river diversion on ecosystem modeling will be premature without successfully reproducing empirical results like these in ecosystem models.  相似文献   
114.
115.
高山微水体由于面积微小且通过地表径流形成串联结构常常被认为与高山溪流具有类似的生境, 然而由于这两类生境中环境因子与底栖动物多样性存在差异, 它们在生态系统中的作用可能完全不同。滇西北地区是全球生物多样性热点区域之一, 境内高山微水体和高山溪流分布密集, 在区域底栖生物多样性维持方面具有重要的功能, 然而目前对这两类高山淡水生态系统的研究较少。为了比较这两类生境环境因子的异同及其对底栖动物多样性的维持作用, 2015年6月, 作者在云南省怒江州贡山县的高山峡谷内, 对27个高山微水体和同区域分布的1条高山溪流(海拔高差500 m范围)的底栖动物多样性和水环境因子进行了实地调查。结果表明: (1)高山微水体和高山溪流底栖动物群落中优势分类单元种群数量均比较庞大, 而稀有分类单元数量较多且种群较小; (2)两种生境在环境因子、物种多样性、功能多样性和群落结构方面的差异明显, 高山溪流有较高的物种丰富度、物种多样性和功能多样性; (3)高山微水体底栖动物多样性的分布与水环境因子无关, 而高山溪流底栖动物多样性与群落结构的形成受到与流速关联的水环境因子和海拔的影响。因此, 高山微水体与高山溪流不能简单地视为类似的生境类型, 它们对区域底栖动物多样性和生态功能维持可能具有不同的作用。  相似文献   
116.
In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still limited. In the present study, we conducted a precipitation manipulation experiment in a tropical forest. First, we applied a 60% rainfall exclusion in April and May to defer the onset of wet season and added the same amount of water in October and November to mimic a deferred wet season (DW); second, we increased as much as 25% mean annual precipitation into plots in July and August to simulate a wetter wet season (WW). Five single‐species litters, with their carbon to nitrogen ratio ranged from 27 to 49, and a mixed litter were used to explore how the precipitation change treatments would affect litter decomposition rate. The interaction between precipitation changes and litter species was not significant. The DW treatment marginally accelerated litter decomposition across six litter types. Detailed analysis showed that DW increased litter decomposition rate in the periods of January to March and October to December, when soil moisture was increased by the water addition in the dry season. In contrast, WW did not significantly affect litter decomposition rate, which was consistent with the unchanged soil moisture pattern. In conclusion, the study indicated that regardless of litter types or litter quality, the projected deferred wet season would increase litter decomposition rate, whereas the wetter wet season would not affect litter decomposition rate in the tropical forests. This study improves our knowledge of how tropical forest carbon cycling in response to precipitation change.  相似文献   
117.
118.
Heavy metals, that is Cu(II), are harmful to the environment. There is an increasing demand to develop inexpensive detection methods for heavy metals. Here, we developed a yeast biosensor with reduced-noise and improved signal output for potential on-site copper ion detection. The copper-sensing circuit was achieved by employing a secondary genetic layer to control the galactose-inducible (GAL) system in Saccharomyces cerevisiae. The reciprocal control of the Gal4 activator and Gal80 repressor under copper-responsive promoters resulted in a low-noise and sensitive yeast biosensor for copper ion detection. Furthermore, we developed a betaxanthin-based colorimetric assay, as well as 2-phenylethanol and styrene-based olfactory outputs for the copper ion detection. Notably, our engineered yeast sensor confers a narrow range switch-like behaviour, which can give a ‘yes/no’ response when coupled with a betaxanthin-based visual phenotype. Taken together, we envision that the design principle established here might be applicable to develop other sensing systems for various chemical detections.  相似文献   
119.
Standard plant DNA barcodes based on 2–3 plastid regions, and nrDNA ITS show variable levels of resolution, and fail to discriminate among species in many plant groups. Genome skimming to recover complete plastid genome sequences and nrDNA arrays has been proposed as a solution to address these resolution limitations. However, few studies have empirically tested what gains are achieved in practice. Of particular interest is whether adding substantially more plastid and nrDNA characters will lead to an increase in discriminatory power, or whether the resolution limitations of standard plant barcodes are fundamentally due to plastid genomes and nrDNA not tracking species boundaries. To address this, we used genome skimming to recover near-complete plastid genomes and nuclear ribosomal DNA from Rhododendron species and compared discrimination success with standard plant barcodes. We sampled 218 individuals representing 145 species of this species-rich and taxonomically difficult genus, focusing on the global biodiversity hotspots of the Himalaya-Hengduan Mountains. Only 33% of species were distinguished using ITS+matK+rbcL+trnH-psbA. In contrast, 55% of species were distinguished using plastid genome and nrDNA sequences. The vast majority of this increase is due to the additional plastid characters. Thus, despite previous studies showing an asymptote in discrimination success beyond 3–4 plastid regions, these results show that a demonstrable increase in discriminatory power is possible with extensive plastid genome data. However, despite these gains, many species remain unresolved, and these results also reinforce the need to access multiple unlinked nuclear loci to obtain transformative gains in species discrimination in plants.  相似文献   
120.
The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The (2)H and (31)P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the (2)H order parameter profiles of the POPC-d(31) or POPS-d(31) acyl chains as well as the (31)P chemical shift anisotropy width and (31)P T(1) relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, (31)P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号