首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22315篇
  免费   1544篇
  国内免费   1016篇
  2024年   40篇
  2023年   263篇
  2022年   515篇
  2021年   1034篇
  2020年   691篇
  2019年   923篇
  2018年   906篇
  2017年   692篇
  2016年   975篇
  2015年   1351篇
  2014年   1539篇
  2013年   1781篇
  2012年   1980篇
  2011年   1850篇
  2010年   1028篇
  2009年   914篇
  2008年   1028篇
  2007年   940篇
  2006年   855篇
  2005年   734篇
  2004年   647篇
  2003年   533篇
  2002年   479篇
  2001年   312篇
  2000年   320篇
  1999年   282篇
  1998年   178篇
  1997年   169篇
  1996年   183篇
  1995年   162篇
  1994年   137篇
  1993年   102篇
  1992年   152篇
  1991年   150篇
  1990年   124篇
  1989年   97篇
  1988年   98篇
  1987年   101篇
  1986年   70篇
  1985年   89篇
  1984年   50篇
  1983年   53篇
  1982年   27篇
  1981年   26篇
  1980年   24篇
  1979年   35篇
  1978年   28篇
  1977年   20篇
  1975年   29篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   
932.
The severity and/or progression of osteonecrosis of the femoral head (ONFH) are commonly assessed by radiography, nuclear magnetic resonance image which aren’t invariably correlated to severity of disease and may be disturbed by other factors. Consequently, exploring the novel biochemical signatures of ONFH may be beneficial for diagnosing and understanding this disease. In this work, a bone trabecula metabolomics was undertaken to determine the expression pattern of low molecular mass metabolites in patients of femoral head necrosis based on the ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS). Histological study showed that necrotic bone was characterized by necrosis, fibrosis and lacuna, but adjacent “normal” bone was pathologically normal. Principal component analysis in combination with orthogonal partial least-squares discrimination analysis was used to find out changed metabolites. MS/MS was used to speculate the corresponding molecule. Both osteonecrotic bone trabecula (ONBT) and adjacent “normal” bone trabecula (ANBT) showed higher levels of amino acids, such as proline, arginine, glutamine, dipeptides and lower levels of antioxidants. Most disrupted lipids, such as fatty acid esters, glycerophospholipids, sphingolipids, were found in osteonecrotic zone. The area under the receiver operating characteristic curve of combinational biomarkers (d-arginine, l-proline, l-carnitine, inosine) in ONBT and ANBT was 0.996 and 0.950, respectively. Our findings might provide a significant insight to understand the metabolic mechanism and diagnosis biomarkers of ONFH in the future.  相似文献   
933.
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV‐1) infection are closely intertwined, with one‐quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8+ T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV‐1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8+ T cells is an appealing strategy to impose improved anti‐MTB/HIV‐1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross‐reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV‐1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199‐207 peptide and HIV‐1 Env120‐128 peptide was screened out from peripheral blood mononuclear cells of a HLA‐A*0201+ healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8+ T cells using a recombinant retroviral vector. The bispecificity of the TCR gene‐modified CD8+ T cells was demonstrated by elevated secretion of interferon‐γ, tumour necrosis factor‐α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199‐207 or Env120‐128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV‐1 simultaneously by transfecting CD8+ T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV‐1 coinfected individuals.  相似文献   
934.
This study investigated soluble (Sol-EPS), loosely bound (LB-EPS), and tightly bound extracellular polymeric substances (TB-EPS) harvested from biofilm and planktonic cultures of the marine bacterium Pseudoalteromonas ulvae TC14. The aim of the characterization (colorimetric methods, FTIR, GC-MS, NMR, HPGPC, and AFM analyses) was to identify new anti-biofilm compounds; activity was assessed using the BioFilm Ring Test®. A step-wise separation of EPS was designed, based on differences in water-solubility and acidity. An acidic fraction was isolated from TB-EPS, which strongly inhibited biofilm formation by marine bacterial strains in a concentration-dependent manner. The main constituents of this fraction were characterized as two glucan-like polysaccharides. An active poly(glutamyl-glutamate) fraction was also recovered from TB-EPS. The distribution of these key EPS components in Sol-EPS, LB-EPS, and TB-EPS was distinct and differed quantitatively in biofilm vs planktonic cultures. The anti-biofilm potential of the fractions emphasizes the putative antifouling role of EPS in the environment.  相似文献   
935.
936.
937.
938.
939.
This study aimed to improve understanding of the strategies developed by the Mediterranean seaweed Taonia atomaria to chemically control bacterial epibiosis. An experimental protocol was optimized to specifically extract algal surface-associated metabolites by a technique involving dipping in organic solvents whilst the integrity of algal cell membranes was assessed by fluorescent microscopy. This methodology was validated using mass spectrometry-based profiles of algal extracts and analysis of their principal components, which led to the selection of methanol as the extraction solvent with a maximum exposure time of 15 s. Six compounds (AF) were identified in the resulting surface extracts. Two of these surface-associated compounds (B and C) showed selective anti-adhesion properties against reference bacterial strains isolated from artificial surfaces while remaining inactive against epibiotic bacteria of T. atomaria. Such specificity was not observed for commercial antifouling biocides and other molecules identified in the surface or whole-cell extracts of T. atomaria.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号