首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9138篇
  免费   693篇
  国内免费   765篇
  10596篇
  2024年   18篇
  2023年   127篇
  2022年   293篇
  2021年   503篇
  2020年   307篇
  2019年   438篇
  2018年   399篇
  2017年   251篇
  2016年   425篇
  2015年   588篇
  2014年   696篇
  2013年   784篇
  2012年   882篇
  2011年   760篇
  2010年   436篇
  2009年   433篇
  2008年   454篇
  2007年   396篇
  2006年   357篇
  2005年   257篇
  2004年   248篇
  2003年   202篇
  2002年   148篇
  2001年   133篇
  2000年   121篇
  1999年   102篇
  1998年   100篇
  1997年   91篇
  1996年   83篇
  1995年   71篇
  1994年   64篇
  1993年   46篇
  1992年   78篇
  1991年   47篇
  1990年   33篇
  1989年   37篇
  1988年   22篇
  1987年   25篇
  1986年   25篇
  1985年   24篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
A bacteria strain Hg4-03 of Carnobacterium sp., isolated from the intestine of Hepialus gonggaensis larvae, was fed back to the fourth instars larvae as probiotics to evaluate its impact on the growth performance and digestive enzymes. The larvae were reared in the lab with a natural diet treated with different concentrations of bacterial fermentation and heating killed bacteria, respectively. Compared with the control group, results showed that the growth rates significantly increased and the insect mortality rate decreased significantly after feeding with live probiotics. Meanwhile, the activities of protease, total amylase and trehalase rose significantly in intestinal fluid of the group fed with live probiotics compared with the control treatment. These findings demonstrated that the intestinal bacteria Hg4-03 play an important role for the growth of H. gonggaensis larvae. The bacteria community can improve the growth of H. gonggaensis larvae, indicating that intestinal bacteria may probably be one of the most important factors impacting H. gonggaensis larvae reared in control conditions.  相似文献   
962.
Wang  Qi  Xin  Yinqiang  Zhang  Feng  Feng  Zhiyong  Fu  Jin  Luo  Lan  Yin  Zhimin 《World journal of microbiology & biotechnology》2011,27(3):693-700
γ-aminobutyric acid (GABA) is an important bioactive regulator, and its biosynthesis is primarily through the α-decarboxylation of glutamate by glutamate decarboxylase (GAD). The procedures to obtain GABA by bioconvertion with high activity recombinant Escherichia coli GAD have been seldom understood. In this study, Escherichia coli GAD (gadA) was highly expressed (about 70–75% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-gadA, which was induced by 0.4 mM IPTG in LB medium, and maximal GABA-forming activity of the recombinant GAD was 40 U/mL at a concentration (0.15 mM) of pyridoxal phosphate (PLP) and a concentration (0.6 mM) of Ca2+ at optimal pH of 3.8. The optimal concentration (7.5 mM) of Mn2+ can also improve the activity of recombinant enzyme, but the co-effect of Ca2+ and Mn2+ exhibited antagonism effect when added simultaneously. LB and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The relative activity was markedly higher activated by Ca2+ (174%), Mn2+ (164%) than that by other seven bivalent cations. Finally, the yield of GABA was high of 94 g/L detected by paper chromatography or HPLC in 1 L reaction system with 30 mL crude GAD (12 U/mL). By entrapping Escherichia coli glutamate decarboxylase into sodium alginate and carrageenan gel beads, the activity of immobilized GAD (IGAD) remained 85% during the initial five batches and the activity still remained 50% at the tenth batch, these results indicated that the recombinant Escherichia coli GAD was feasible for the future industrial production of GABA.  相似文献   
963.
A xylanase gene, xynA4-2, was obtained from the genome sequence of thermoacidophilic Alicyclobacillus sp. A4 and expressed in Escherichia coli BL21 (DE3). xynA4-2 encodes a mature protein of 411 residues with a calculated molecular weight of 46.8 kDa. Based on the amino acid sequence similarities (highest identity of 61%), the enzyme was confined into glycoside hydrolase family 10. The purified recombinant XynA4-2 exhibited maximum activity at pH 6.2 and 55°C. The enzyme was stable over a broad pH range, retaining more than 90% of the original activity at pH 5.8–12.0, 37°C for 1 h. The substrate specificity of XynA4-2 was relatively narrow, exhibiting 100, 93, and 35% of the relative activity towards birchwood xylan, oat spelt xylan, and wheat arabinoxylan, respectively. Supplementation of XynA4-2 to mash caused the reduction of mash filtration rate (5.6%) and viscosity (4.0%). When combined with the commercial glucanase from Sunson, higher reduction was detected in the filtration rate (12.0%) and viscosity (17.2%). These favorable properties make XynA4-2 a good candidate in the brewing industry.  相似文献   
964.
965.
The impacts of global climatic change on belowground ecological processes of terrestrial ecosystems are still not clear. We therefore conducted an experiment in the subalpine coniferous forest ecosystem of the eastern edges of the Tibetan Plateau to study roots of Picea asperata seedlings and rhizosphere soil responses to soil warming and nitrogen availability from April 2007 to December 2008. The seedlings were subjected to two levels of temperature (ambient; infrared heater warming) and two nitrogen levels (0 or 25 g m−2year−1 N). We used a free air temperature increase from an overhead infrared heater to raise both air and soil temperature by 2.1 and 2.6°C, respectively. The results showed that warming alone significantly increased total biomass, coarse root biomass and fine root biomass of P. asperata seedlings. Both total biomass and fine root biomass were increased, but coarse root biomass was significantly decreased by nitrogen fertilization and warming combined with nitrogen fertilization. Warming induced a prominent increase in soil organic carbon (SOC) and NO3 -N of rhizosphere soil, while nitrogen fertilization significantly decreased SOC and NH4 +-N of rhizosphere soil. The warming, fertilization and warming × N fertilization interaction decreased soil microbial C significantly, but substantially increased soil microbial N. These results suggest that nitrogen deposition combined with warmer temperatures under future climatic change possibly will have no effect on fine root production of P. asperata seedlings, but could enhance the nitrification process of their rhizosphere soils in subalpine coniferous forests.  相似文献   
966.
967.
968.
Yin S  Dokholyan NV 《Proteins》2011,79(3):1002-1009
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号