首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14374篇
  免费   1363篇
  国内免费   2249篇
  17986篇
  2024年   63篇
  2023年   268篇
  2022年   648篇
  2021年   946篇
  2020年   737篇
  2019年   856篇
  2018年   722篇
  2017年   563篇
  2016年   722篇
  2015年   1050篇
  2014年   1289篇
  2013年   1268篇
  2012年   1570篇
  2011年   1495篇
  2010年   896篇
  2009年   763篇
  2008年   837篇
  2007年   705篇
  2006年   571篇
  2005年   434篇
  2004年   321篇
  2003年   288篇
  2002年   206篇
  2001年   94篇
  2000年   101篇
  1999年   104篇
  1998年   78篇
  1997年   61篇
  1996年   54篇
  1995年   44篇
  1994年   40篇
  1993年   25篇
  1992年   32篇
  1991年   33篇
  1990年   22篇
  1989年   16篇
  1988年   12篇
  1987年   7篇
  1986年   3篇
  1985年   19篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   
202.
203.
The ataxin-2 (ATXN2) gene is located on human chromo-some 12q24.1. In normal individuals, the coding region in exon 1 of this gene has fewer than 31 CAG repeats (Yu et al., 2005: Laffita-Mesa et al., 2012). However, an abnormal expansion of CAG trinucleotide repeats results in the aggre-gation of polyglutamine (polyQ), which causes spinocer-ebellar ataxia type 2 (SCA2) (Pulst et al., 1996). The expanded alleles have more than 32 repeats in the affected individuals, and generally there is an inverse correlation between CAG repeat length and age of onset (Pulst et al., 1996). SCA2 is an autosomal dominant inheritance neurodegenerative disease, whose major clinical feature is progressive cerebellar ataxia. Atrophies of the brainstem and frontal lobe have been frequently detected by magnetic resonance imaging (MRI) (Yamamoto-Watanabe et al., 2010). This disease has the strong effect on sensory and motor control.  相似文献   
204.
205.

Background

Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown.

Methods and Results

Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis.

Conclusion

Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.  相似文献   
206.
207.

Aim

The aim was to investigate the association between human insulin and cancer incidence and mortality in Chinese patients with type 2 diabetes.

Methods

We recruited 8,774 insulin-naïve diabetes patients from the Shanghai Diabetes Registry (SDR). The follow-up rate was 85.4%. All subjects were divided into the insulin use cohort (n = 3,639) and the non-insulin use cohort (n = 5,135). The primary outcome was the first diagnosis of any cancer. The secondary outcome was all-cause mortality. Cox proportional hazards model was used to estimate the relative risk (RR) of cancer and mortality.

Results

We observed 98 cancer events in the insulin use cohort and 170 in the non-insulin use cohort. Cancer incidence rates were 78.6 and 74.3 per 10,000 patients per year in the insulin users and the non-insulin users, respectively. No significant difference in cancer risk was observed between the two cohorts (adjusted RR = 1.20, 95% CI 0.89–1.62, P = 0.228). Regarding site-specific cancers, only the risk of liver cancer was significantly higher in the insulin users compared to that in the non-insulin users (adjusted RR = 2.84, 95% CI 1.12–7.17, P = 0.028). The risks of overall mortality (adjusted RR = 1.89, 95% CI 1.47–2.43, P<0.0001) and death from cancer (adjusted RR = 2.16, 95% CI 1.39–3.35, P = 0.001) were all significantly higher in the insulin users than in the non-insulin users.

Conclusion

There was no excess risk of overall cancer in patients with type 2 diabetes who were treated with human insulin. However, a significantly higher risk of liver cancer was found in these patients. Moreover, insulin users showed higher risks of overall and cancer mortality. Considering that individuals treated with insulin were more likely to be advanced diabetic patients, caution should be used in interpreting these results.  相似文献   
208.
Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号