首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11124篇
  免费   891篇
  国内免费   826篇
  12841篇
  2024年   31篇
  2023年   173篇
  2022年   393篇
  2021年   627篇
  2020年   406篇
  2019年   470篇
  2018年   520篇
  2017年   390篇
  2016年   470篇
  2015年   701篇
  2014年   773篇
  2013年   870篇
  2012年   1052篇
  2011年   922篇
  2010年   511篇
  2009年   441篇
  2008年   619篇
  2007年   517篇
  2006年   444篇
  2005年   377篇
  2004年   293篇
  2003年   262篇
  2002年   198篇
  2001年   174篇
  2000年   146篇
  1999年   156篇
  1998年   95篇
  1997年   95篇
  1996年   100篇
  1995年   78篇
  1994年   86篇
  1993年   64篇
  1992年   59篇
  1991年   74篇
  1990年   58篇
  1989年   42篇
  1988年   32篇
  1987年   17篇
  1986年   22篇
  1985年   18篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.
We conducted a systematic assessment and comparative study on the biochemical and cellular characteristics of cultured cotton cells during the entire process of somatic embryogenesis (SE). All staged cultures were widely investigated in this assay. Cell and tissue ectogenesis manipulation combined with flow cytometry (FCM) was employed to cellular study during the whole totipotency process of dedifferentiation and redifferentiation. We identified two phases of chromatin decondensation during the dedifferentiation and redifferentiation. At the same time, sharp increase in the ratio of indoleacetic acid (IAA), isopentenyladenosine group (iPAs) at the same stage of cell dedifferentiation and redifferentiation process serve as distinct biochemical maker of dedifferentiation and SE initiation with the unique feature. Our results suggest the two phases of chromatin reorganization associated with endogenous auxin/cytokinin dynamic activity may underlie dedifferentiation and redifferentiation during the entire SE process in cotton.  相似文献   
822.
Depletion of B cells in rheumatoid arthritis is therapeutically efficacious. Yet, the mechanism by which B cells participate in the inflammatory process is unclear. We previously demonstrated that Ag-specific B cells have two important functions in the development of arthritis in a murine model of rheumatoid arthritis, proteoglycan (PG)-induced arthritis (PGIA). PG-specific B cells function as autoantibody-producing cells and as APCs that activate PG-specific T cells. Moreover, the costimulatory molecule CD86 is up-regulated on PG-specific B cells in response to stimulation with PG. To address the requirement for CD80/CD86 expression on B cells in the development of PGIA, we generated mixed bone marrow chimeras in which CD80/CD86 is specifically deleted on B cells and not on other APC populations. Chimeras with a specific deficiency in CD80/CD86 expression on B cells are resistant to the induction of PGIA. The concentration of PG-specific autoantibody is similar in mice sufficient or deficient for CD80/86-expressing B cells, which indicates that resistance to PGIA is not due to the suppression of PG-specific autoantibody production. CD80/86-deficient B cells failed to effectively activate PG-specific autoreactive T cells as indicated by the failure of T cells from PG-immunized CD80/86-deficient B cell chimeras to transfer arthritis into SCID mice. In vitro secondary recall responses to PG are also dependent on CD80/86-expressing B cells. These results demonstrate that a CD80/86:CD28 costimulatory interaction between B cells and T cells is required for autoreactive T cell activation and the induction of arthritis but not for B cell autoantibody production.  相似文献   
823.
Abstract

Identifying the source effect on heavy metals to human health risk is essential for devising and implementing restoration policies for polluted soils. For this purpose, eight heavy metals (As, Cd, Hg, Cr, Cu, Ni, Pb, and Zn) in soil profile samples (0–10, 10–20, 20–30, and 30–40?cm) collected in the area around aluminum-plastic manufacturing facilities (APMF) were determined. An absolute principal component score multiple linear regression (APCS-MLR) model supported by a health risk assessment (HRA) model was developed to determine the source apportionment of soil heavy metals and contribution rate of pollution sources to human health risk. Results showed significant accumulations of eight metals in the topsoil (0–20?cm), parent material, transportation, APMF, and agricultural practices were the four major contributing sources for heavy metals in soils, with average contribution percentages of 21.69%, 24.99%, 29.60%, and 14.25%, respectively. Carcinogenic risk factors for adults (1.23E-04) and children (1.32E-04) were found to be above the acceptable level (1E-06 to 1E-04). The health risk quantification results indicated that parent material, APMF, transportation, agricultural practices, and unidentified factors accounted for 55.76%, 14.48%, 12.09%, 10.13%, and 7.54% of the carcinogenic risk for children and adults. The adverse impacts of Cd, Zn, and Pb accumulations in soil coming from APMF activities were significant and need to receive more attention.  相似文献   
824.
The purpose of the study was to construct mucosal vaccine of a recombinant Lactococcus lactis expressing PRRSV ORF6 gene and evaluate mucosal and systemic immune response against PRRSV in mice after intranasal immunization. The result show that the vaccine can stimulate mice to produce specific IgG in serum and remarkable special s-IgA in lung lavage fluid, at the same time, the contents of cytokines IL-2 and IFN-γ of the experimental group were significant higher than those of the control group (P < 0.01), however, the contents of cytokines IL-4 was not different to the all groups. In summary, the constructed mucosal vaccine can significantly induce mucosal immune, humoral immunity and cellular immunity involved Th1 type cytokines, which will lay a theoretical foundation on immune mechanism and new efficient vaccines for PRRSV.  相似文献   
825.
826.
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.  相似文献   
827.
828.
Inorganic nanoparticles (NPs) are among the most produced NPs that could be used in consumer products and as healthcare materials, however, the intrinsic toxicity particularly through the mechanism associated oxidative stress raises the health concern about inorganic NP exposure. Phytochemicals are bioactive metabolites derived from plants as well as non-pathogenic microorganisms living within plants and have been shown to be beneficial to human health with their anti-aging, anti-cancer, anti-inflammation and anti-oxidant properties. In the present review, the influence of on the biocompatibility of inorganic NPs was discussed. It has been shown that phytochemicals could be used as bio-friendly capping agents for green synthesis of inorganic NPs, and phytochemical coated inorganic NPs were remarkable stable and biocompatible with high therapeutic efficiency. Meanwhile, the presence of phytochemicals was also able to reduce the side effects and enhance the therapeutic abilities of inorganic NPs, which is likely attributed to the anti-oxidative properties of phytochemicals. Thus, using phytochemicals could be a promising and plausible way to reduce side effects and increase the biocompatibility of inorganic NPs for biomedical applications.  相似文献   
829.
830.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号