首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11121篇
  免费   894篇
  国内免费   826篇
  12841篇
  2024年   31篇
  2023年   173篇
  2022年   393篇
  2021年   627篇
  2020年   406篇
  2019年   470篇
  2018年   520篇
  2017年   390篇
  2016年   470篇
  2015年   701篇
  2014年   773篇
  2013年   870篇
  2012年   1052篇
  2011年   922篇
  2010年   511篇
  2009年   441篇
  2008年   619篇
  2007年   517篇
  2006年   444篇
  2005年   377篇
  2004年   293篇
  2003年   262篇
  2002年   198篇
  2001年   174篇
  2000年   146篇
  1999年   156篇
  1998年   95篇
  1997年   95篇
  1996年   100篇
  1995年   78篇
  1994年   86篇
  1993年   64篇
  1992年   59篇
  1991年   74篇
  1990年   58篇
  1989年   42篇
  1988年   32篇
  1987年   17篇
  1986年   22篇
  1985年   18篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
202.
Marine sponges are ancient and simple multicellular filter-feeding invertebrates attached to solid substrates in benthic habitats and host a variety of fungi both inside and on their surface because of its unique ingestion and digest system. Investigation on marine sponge-associated fungi mainly focused on the small molecular metabolites, yet little attention had been paid to the extracellular polysaccharides. In this study, a homogeneous extracellular polysaccharide AS2-1 was obtained from the fermented broth of the marine sponge endogenous fungus Alternaria sp. SP-32 using ethanol precipitation, anion-exchange, and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that AS2-1 was composed of mannose, glucose, and galactose with a molar ratio of 1.00:0.67:0.35, and its molecular weight was 27.4 kDa. AS2-1 consists of a mannan core and a galactoglucan chain. The mannan core is composed of (1→6)-α-Manp substituted at C-2 by (1→2)-α-Manp with different degrees of polymerization. The galactoglucan chain consists of (1→6)-α-Glcp residues with (1→6)-β-Galf residues attached to the last glucopyranose residue at C-6. (1→6)-β-Galf residues have additional branches at C-2 consisting of disaccharide units of (1→2)-β-Galf and (1→2)-α-Glcp residues. The glucopyranose residue of the galactoglucan chain is linked to the mannan core. AS2-1 possessed a high antioxidant activity as evaluated by scavenging of 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals in vitro. AS2-1 was also evaluated for cytotoxic activity on Hela, HL-60, and K562 cell lines by the MTT and SRB methods. The investigation demonstrated that AS2-1 was a novel extracellular polysaccharide with different characterization from extracellular polysaccharides produced by other marine microorganisms.  相似文献   
203.
Arik Kershenbaum  Daniel T. Blumstein  Marie A. Roch  Çağlar Akçay  Gregory Backus  Mark A. Bee  Kirsten Bohn  Yan Cao  Gerald Carter  Cristiane Cäsar  Michael Coen  Stacy L. DeRuiter  Laurance Doyle  Shimon Edelman  Ramon Ferrer‐i‐Cancho  Todd M. Freeberg  Ellen C. Garland  Morgan Gustison  Heidi E. Harley  Chloé Huetz  Melissa Hughes  Julia Hyland Bruno  Amiyaal Ilany  Dezhe Z. Jin  Michael Johnson  Chenghui Ju  Jeremy Karnowski  Bernard Lohr  Marta B. Manser  Brenda McCowan  Eduardo Mercado III  Peter M. Narins  Alex Piel  Megan Rice  Roberta Salmi  Kazutoshi Sasahara  Laela Sayigh  Yu Shiu  Charles Taylor  Edgar E. Vallejo  Sara Waller  Veronica Zamora‐Gutierrez 《Biological reviews of the Cambridge Philosophical Society》2016,91(1):13-52
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well‐known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near‐future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, ‘Analysing vocal sequences in animals’. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial‐style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.  相似文献   
204.

Background

During inflammation, leukocytes are captured by the selectin family of adhesion receptors lining blood vessels to facilitate exit from the bloodstream. E-selectin is upregulated on stimulated endothelial cells and binds to several ligands on the surface of leukocytes. Selectin:ligand interactions are mediated in part by the interaction between the lectin domain and Sialyl-Lewis x (sLex), a tetrasaccharide common to selectin ligands. There is a high degree of homology between selectins of various species: about 72 and 60 % in the lectin and EGF domains, respectively. In this study, molecular dynamics, docking, and steered molecular dynamics simulations were used to compare the binding and dissociation mechanisms of sLex with mouse and human E-selectin. First, a mouse E-selectin homology model was generated using the human E-selectin crystal structure as a template.

Results

Mouse E-selectin was found to have a greater interdomain angle, which has been previously shown to correlate with stronger binding among selectins. sLex was docked onto human and mouse E-selectin, and the mouse complex was found to have a higher free energy of binding and a lower dissociation constant, suggesting stronger binding. The mouse complex had higher flexibility in a few key residues. Finally, steered molecular dynamics was used to dissociate the complexes at force loading rates of 2000–5000 pm/ps2. The mouse complex took longer to dissociate at every force loading rate and the difference was statistically significant at 3000 pm/ps2. When sLex-coated microspheres were perfused through microtubes coated with human or mouse E-selectin, the particles rolled more slowly on mouse E-selectin.

Conclusions

Both molecular dynamics simulations and microsphere adhesion experiments show that mouse E-selectin protein binds more strongly to sialyl Lewis x ligand than human E-selectin. This difference was explained by a greater interdomain angle for mouse E-selectin, and greater flexibility in key residues. Future work could introduce similar amino acid substitutions into the human E-selectin sequence to further modulate adhesion behavior.
  相似文献   
205.
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.  相似文献   
206.
A series of SrMoO4:Sm3+,Tb3+,Na+ phosphors was synthesized using a high‐temperature solid‐state reaction method in air. On excitation at 290 nm, SrMoO4:Sm3+,Tb3+ phosphor emitted light that varied systematically from green to reddish‐orange on changing the Sm3+ and Tb3+ ion concentrations. The emission intensities of SrMoO4:Sm3+ and SrMoO4:Sm3+,Tb3+ phosphors were increased two to four times due to charge compensation when Na+ was added as a charge compensator. The luminescence mechanism and energy transfer could be explained using energy‐level diagrams of the MoO42– group, Sm3+ and Tb3+ ions. SrMoO4:Sm3+,Tb3+,Na+ could be used as reddish‐orange phosphor in white light‐emitting diodes (LEDs) based on an ~ 405 nm near‐UV LED chip. This research is helpful in adjusting and improving the luminescence properties of other phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
207.
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号