全文获取类型
收费全文 | 3312篇 |
免费 | 220篇 |
国内免费 | 167篇 |
专业分类
3699篇 |
出版年
2024年 | 15篇 |
2023年 | 78篇 |
2022年 | 173篇 |
2021年 | 272篇 |
2020年 | 180篇 |
2019年 | 226篇 |
2018年 | 206篇 |
2017年 | 143篇 |
2016年 | 211篇 |
2015年 | 280篇 |
2014年 | 358篇 |
2013年 | 345篇 |
2012年 | 331篇 |
2011年 | 286篇 |
2010年 | 153篇 |
2009年 | 111篇 |
2008年 | 112篇 |
2007年 | 83篇 |
2006年 | 49篇 |
2005年 | 37篇 |
2004年 | 22篇 |
2003年 | 12篇 |
2002年 | 8篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1959年 | 2篇 |
排序方式: 共有3699条查询结果,搜索用时 15 毫秒
21.
Recently, many studies have attempted to illustrate the mechanism of autophagy in protection against oxidative stress to the heart induced by H(2)O(2). However, whether resveratrol-induced autophagy involves the p38 mitogen-activated protein kinase (MAPK) pathway is still unknown. This study aimed to investigate whether treating H9c2 cells with resveratrol increases autophagy and attenuates the cell death and apoptosis induced by oxidative stress via the p38 MAPK pathway. Resveratrol with or without SB202190, an inhibitor of the p38 MAPK pathway, was added 30 min before H(2)O(2). After H(2)O(2) treatment, the cells were incubated under 5% CO(2) at 37 °C for 24 h to assess cell survival and death or incubated for 20 min for Western blot and transmission electron microscopy. Flow cytometry was used to detect apoptosis after 6 h of H(2)O(2) treatment. Resveratrol at 20 μmol/L protected H9c2 cells treated with 100 μmol/L H(2)O(2) from oxidative damage. It increased cell survival and markedly decrease lactate dehydrogenase release. In addition, resveratrol increased autophagy and decreased H(2)O(2)-induced apoptosis. Furthermore, the protective effects of resveratrol were inhibited by 10 μmol/L SB202190. Thus, resveratrol protected H(2)O(2)-treated H9c2 cells by upregulating autophagy via the p38 MAPK pathway. 相似文献
22.
Li X Jiang W Li W Lian B Wang S Liao M Chen X Wang Y Lv Y Wang S Yang L 《Briefings in bioinformatics》2012,13(2):175-186
The global insight into the relationships between miRNAs and their regulatory influences remains poorly understood. And most of complex diseases may be attributed to certain local areas of pathway (subpathway) instead of the entire pathway. Here, we reviewed the studies on miRNA regulations to pathways and constructed a bipartite miRNAs and subpathways network for systematic analyzing the miRNA regulatory influences to subpathways. We found that a small fraction of miRNAs were global regulators, environmental information processing pathways were preferentially regulated by miRNAs, and miRNAs had synergistic effect on regulating group of subpathways with similar function. Integrating the disease states of miRNAs, we also found that disease miRNAs regulated more subpathways than nondisease miRNAs, and for all miRNAs, the number of regulated subpathways was not in proportion to the number of the related diseases. Therefore, the study not only provided a global view on the relationships among disease, miRNA and subpathway, but also uncovered the function aspects of miRNA regulations and potential pathogenesis of complex diseases. A web server to query, visualize and download for all the data can be freely accessed at http://bioinfo.hrbmu.edu.cn/miR2Subpath. 相似文献
23.
Yuhua Wang Xuelin Zhou Jinyan Luo Suhui Lv Rui Liu Xuan Du Bei Jia Fengtong Yuan Heng Zhang Jiamu Du 《植物学报(英文版)》2021,63(6):1091-1096
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize. 相似文献
24.
Apoplastic hydrogen peroxide and superoxide anion exhibited different regulatory functions in salt-induced oxidative stress in wheat leaves 总被引:2,自引:0,他引:2
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment. 相似文献
25.
26.
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein. 相似文献
27.
Wei Wang Kun Lv Ji‐Rui Wang Jing Zhou Jian‐Qiang Gu Guo‐Xin Zhou Zhi‐Hong Xu 《Entomological Research》2019,49(3):113-122
In the present study, partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene of 22 island populations of the springtail Homidia socia in the Thousand Island Lake were sequenced. Across all sequences, 37 haplotypes were identified for the 510‐bp mitochondrial (mt) DNA COI gene. Haplotype 2 was the most common, and was distributed in the most of the 22 island populations. Haplotype diversity ranged from 0.065 to 0.733, and the total genetic diversity was 0.56216. The genetic characteristics of the 22 island populations were analyzed using the fixation index and gene flow, with values of 0.00043–0.94900 and 0.02703–703.72540, respectively. Comparison between (island area and isolations) with population genetic diversity revealed that there were no significant correlations between them, except for a significant correlation between the number of haplotypes and island area. Mantel tests showed that there was no significant correlation between geographic distance and genetic distance among various groups. All the results indicated that there were no obvious relationships between island characteristics and the genetic diversity of the springtails. We consider that the low dispersal capacity of springtails and the island patches surrounded by water in the Thousand Island Lake are the major factors affecting the genetic diversity of H. socia. 相似文献
28.
29.
A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150~200 nm in length and 20~30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p?<?0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect. 相似文献
30.