首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6282篇
  免费   506篇
  国内免费   398篇
  2023年   73篇
  2022年   159篇
  2021年   311篇
  2020年   216篇
  2019年   263篇
  2018年   230篇
  2017年   174篇
  2016年   247篇
  2015年   398篇
  2014年   470篇
  2013年   491篇
  2012年   605篇
  2011年   503篇
  2010年   315篇
  2009年   292篇
  2008年   323篇
  2007年   279篇
  2006年   232篇
  2005年   199篇
  2004年   194篇
  2003年   139篇
  2002年   128篇
  2001年   113篇
  2000年   96篇
  1999年   107篇
  1998年   49篇
  1997年   61篇
  1996年   46篇
  1995年   42篇
  1994年   31篇
  1993年   36篇
  1992年   42篇
  1991年   38篇
  1990年   46篇
  1989年   37篇
  1988年   25篇
  1987年   25篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   11篇
  1982年   9篇
  1981年   8篇
  1979年   14篇
  1978年   8篇
  1975年   5篇
  1973年   9篇
  1972年   6篇
  1971年   9篇
  1968年   5篇
排序方式: 共有7186条查询结果,搜索用时 15 毫秒
91.
The heterogeneity in prognoses and chemotherapeutic responses of colon cancer patients with similar clinical features emphasized the necessity for new biomarkers that help to improve the survival prediction and tailor therapies more rationally and precisely. In the present study, we established a s troma-related l ncRNA s ignature (SLS) based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model could not only distinguish patients with different recurrence and mortality risks through univariate analysis, but also served as an independent factor for relapse-free and overall survival. Compared with the conventionally used TNM stage system, the SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model also effectively screened chemotherapy-responsive patients, as only patients in the low-SLS group could benefit from adjuvant chemotherapy. The following cell infiltration and competing endogenous RNA (ceRNA) network functional analyses further confirmed the association between the SLS model and stromal activation-related biological processes. Additionally, this study also identified three phenotypically distinct colon cancer subtypes that varied in clinical outcome and chemotherapy benefits. In conclusion, our SLS model may be a significant determinant of survival and chemotherapeutic decision-making in colon cancer and may have a strong clinical transformation value.  相似文献   
92.
Benign prostatic hyperplasia (BPH) occurs most commonly among older men, often accompanied by chronic tissue inflammation. Although its aetiology remains unclear, autoimmune dysregulation may contribute to BPH. Regulatory T cells (Tregs) prevent autoimmune responses and maintain immune homeostasis. In this study, we aimed to investigate Tregs frequency, phenotype, and function in BPH patients and to evaluate adoptive transfer Tregs for immunotherapy in mice with BPH via CD39. Prostate specimens and peripheral blood from BPH patients were used to investigate Treg subsets, phenotype and Treg‐associated cytokine production. Sorted CD39+/? Tregs from healthy mice were adoptively transferred into mice before or after testosterone propionate administration. The Tregs percentage in peripheral blood from BPH patients was attenuated, exhibiting low Foxp3 and CD39 expression with low levels of serum IL‐10, IL‐35 and TGF‐β. Immunohistochemistry revealed Foxp3+ cells were significantly diminished in BPH prostate with severe inflammatory. Although the Tregs subset was comprised of more effector/memory Tregs, CD39 was still down‐regulated on effector/memory Tregs in BPH patients. Before or after testosterone propionate administration, no alterations of BPH symptoms were observed due to CD39‐ Tregs in mice, however, CD39+Tregs existed more potency than Tregs to regulate prostatic hyperplasia and inhibit inflammation by decreasing IL‐1β and PSA secretion, and increasing IL‐10 and TGF‐β secretion. Furthermore, adoptive transfer with functional Tregs not only improved prostate hyperplasia but also regulated muscle cell proliferation in bladder. Adoptive transfer with Tregs may provide a novel method for the prevention and treatment of BPH clinically.  相似文献   
93.
Radiation protection on male testis is an important task for ionizing radiation-related workers or people who receive radiotherapy for tumours near the testicle. In recent years, Toll-like receptors (TLRs), especially TLR4, have been widely studied as a radiation protection target. In this study, we detected that a low-toxicity TLR4 agonist monophosphoryl lipid A (MPLA) produced obvious radiation protection effects on mice testis. We found that MPLA effectively alleviated testis structure damage and cell apoptosis induced by ionizing radiation (IR). However, as the expression abundance differs a lot in distinct cells and tissues, MPLA seemed not to directly activate TLR4 singling pathway in mice testis. Here, we demonstrated a brand new mechanism for MPLA producing radiation protection effects on testis. We observed a significant activation of TLR4 pathway in macrophages after MPLA stimulation and identified significant changes in macrophage-derived exosomes protein expression. We proved that after MPLA treatment, macrophage-derived exosomes played an important role in testis radiation protection, and specially, G-CSF and MIP-2 in exosomes are the core molecules in this protection effect.  相似文献   
94.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   
95.
Lithium–sulfur batteries have attracted extensive attention because of their high energy density. However, their application is still impeded by the inherent sluggish kinetics and solubility of intermediate products (i.e., polysulfides) of the sulfur cathode. Herein, graphene‐supported Ni nanoparticles with a carbon coating are fabricated by directly carbonizing a metal–organic framework/graphene oxide composite, which is then dispersed on a commercial glass fiber membrane to form a separator with electrocatalytic activity. In situ analysis and electrochemical investigation demonstrate that this modified separator can effectively suppress the shuttle effect and regulate the catalytic conversion of intercepted polysulfides, which is also confirmed by density functional theory calculations. It is found that Ni–C sites can chemically interact with polysulfides and stabilize the radical S3?? through Ni? S bonds to enable fast dynamic equilibrium with S62?, while Ni nanoparticles reduce the oxidation barrier of Li2S and accelerate ion/electron transport. As a result, the corresponding lithium–sulfur battery shows a high cycle stability (88% capacity retention over 100 cycles) even with a high sulfur mass loading of 8 mg cm?2 and lean electrolyte (6.25 µ L mg?1). Surprisingly, benefitting from the improved kinetics, the battery can work well at ?50 °C, which is rarely achieved by conventional Li–S batteries.  相似文献   
96.
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.  相似文献   
97.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
98.
99.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   
100.
Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号