首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8614篇
  免费   734篇
  国内免费   1074篇
  2024年   36篇
  2023年   172篇
  2022年   367篇
  2021年   606篇
  2020年   447篇
  2019年   506篇
  2018年   446篇
  2017年   363篇
  2016年   430篇
  2015年   623篇
  2014年   759篇
  2013年   712篇
  2012年   886篇
  2011年   695篇
  2010年   465篇
  2009年   381篇
  2008年   385篇
  2007年   347篇
  2006年   270篇
  2005年   254篇
  2004年   170篇
  2003年   144篇
  2002年   153篇
  2001年   108篇
  2000年   79篇
  1999年   90篇
  1998年   78篇
  1997年   59篇
  1996年   53篇
  1995年   45篇
  1994年   53篇
  1993年   31篇
  1992年   25篇
  1991年   26篇
  1990年   25篇
  1989年   29篇
  1988年   17篇
  1987年   21篇
  1986年   17篇
  1985年   11篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1953年   1篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
101.
本研究通过比较9个内参基因在山羊不同组织中的表达水平进而确定最适合研究山羊组织表达的内参基因。本试验以简州大耳羊为试验材料,利用实时荧光定量PCR技术分析9个内参基因(GAPDH,PPIA,18S rRNA,PPIB,UXT,RPLP0,ACTB,EIF3K和TBP)在心脏、肝脏、脾脏、肺脏、肾脏、大肠、瘤胃、背最长肌和皮下脂肪等组织中的表达差异情况,并利用geNorm、NormFinder和BestKeeper等程序分析了它们的表达稳定性。geNorm和NormFinder程序一致显示TBP表达最稳定,其次是UXT和RPLP0;BestKeeper分析显示18S rRNA表达最为稳定,其次为TBP和ACTB;3个程序一致认为GAPDH表达稳定性最差。综合3个程序分析得出TBP最适合作为山羊组织中的内参基因,其次为UXT和RPLP0,GAPDH表达稳定性最差,不适合作为山羊组织内参,这为后续研究其他目的基因在山羊组织器官中的表达模式提供数据保障。  相似文献   
102.
103.
104.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   
105.
Eukaryotic organisms activate conserved signalling networks to maintain genomic stability in response to DNA genotoxic stresses. However, the coordination of this response pathway in fungal pathogens remains largely unknown. In the present study, we investigated the mechanism by which the northern corn leaf blight pathogen Setosphaeria turcica controls maize infection and activates self-protection pathways in response to DNA genotoxic insults. Appressorium-mediated maize infection by S. turcica was blocked by the S-phase checkpoint. This repression was dependent on the checkpoint central kinase Ataxia Telangiectasia and Rad3 related (ATR), as inhibition of ATR activity or knockdown of the ATR gene recovered appressorium formation in the presence of genotoxic reagents. ATR promoted melanin biosynthesis in S. turcica as a defence response to stress. The melanin biosynthesis genes StPKS and StLac2 were induced by the ATR-mediated S-phase checkpoint. The responses to DNA genotoxic stress were conserved in a wide range of phytopathogenic fungi, including Cochliobolus heterostrophus, Cochliobolus carbonum, Alternaria solani, and Alternaria kikuchiana, which are known causal agents for plant diseases. We propose that in response to genotoxic stress, phytopathogenic fungi including S. turcica activate an ATR-dependent pathway to suppress appressorium-mediated infection and induce melanin-related self-protection in addition to conserved responses in eukaryotes.  相似文献   
106.
Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.  相似文献   
107.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   
108.
Protosappanin‐A (PrA) and oleanolic acid (OA), which are important effective ingredients isolated from Caesalpinia sappan L., exhibit therapeutic potential in multiple diseases. This study focused on exploring the mechanisms of PrA and OA function in podocyte injury. An in vitro model of podocyte injury was induced by the sC5b‐9 complex and assays such as cell viability, apoptosis, immunofluorescence, quantitative real‐time polymerase chain reaction, and western blot were performed to further investigate the effects and mechanisms of PrA and OA in podocyte injury. The models of podocyte injury were verified to be successful as seen through significantly decreased levels of nephrin, podocin, and CD2AP and increased level of desmin. The sC5b‐9‐induced podocyte apoptosis was inhibited in injured podocytes treated with PrA and OA, accompanied by increased protein levels of nephrin, podocin, CD2AP, and Bcl2 and decreased levels of desmin and Bax. The p‐AKT/p‐mTOR levels were also reduced by treatment of PrA and OA while AKT/mTOR was unaltered. Further, the effects of PrA and OA on injured podocytes were similar to that of LY294002 (a PI3K‐AKT inhibitor). PrA and OA were also seen to inhibit podocyte apoptosis and p‐AKT/p‐mTOR levels induced by IGF‐1 (a PI3K‐AKT activator). Our data demonstrate that PrA and OA can protect podocytes from injury or apoptosis, which may occur through inhibition of the abnormal activation of AKT‐mTOR signaling.  相似文献   
109.
为探究谷胱甘肽和没食子酸对紫淮山花色苷的辅色作用,本文研究了谷胱甘肽和没食子酸对紫淮山花色苷降解率、热稳定性及色差的影响。试验表明,谷胱甘肽和没食子酸能有效抑制花色苷的降解,且最佳添加量分别为0.03%和0.2%。在此添加量条件下,紫淮山花色苷在50、70、90℃水浴中的热降解均符合一级降解反应动力学规律。添加谷胱甘肽和没食子酸的紫淮山花色苷降解速率常数(k)小于对照组,半衰期(t 1/2)和活化能(Ea)高于对照组,说明谷胱甘肽和没食子酸能够增强花色苷的热稳定性。色差测定结果表明,经谷胱甘肽和没食子酸辅色后的紫淮山花色苷,其明度指数(L*)和色品指数(a*、b*)较对照组变化缓慢,颜色的稳定性增强。  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号