首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3476篇
  免费   251篇
  国内免费   402篇
  2024年   7篇
  2023年   49篇
  2022年   112篇
  2021年   171篇
  2020年   131篇
  2019年   137篇
  2018年   133篇
  2017年   105篇
  2016年   157篇
  2015年   234篇
  2014年   281篇
  2013年   312篇
  2012年   323篇
  2011年   263篇
  2010年   185篇
  2009年   156篇
  2008年   184篇
  2007年   169篇
  2006年   141篇
  2005年   146篇
  2004年   115篇
  2003年   125篇
  2002年   100篇
  2001年   48篇
  2000年   35篇
  1999年   38篇
  1998年   29篇
  1997年   21篇
  1996年   21篇
  1995年   17篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   11篇
  1990年   6篇
  1989年   15篇
  1987年   6篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1977年   10篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1969年   4篇
排序方式: 共有4129条查询结果,搜索用时 15 毫秒
81.
Recent advances in nanotechnologies have led to wide use of nanomaterials in biomedical field. However, nanoparticles are found to interfere with protein misfolding and aggregation associated with many human diseases. It is still a controversial issue whether nanoparticles inhibit or promote protein aggregation. In this study, we used molecular dynamics simulations to explore the effects of three kinds of carbon nanomaterials including graphene, carbon nanotube and C60 on the aggregation behavior of islet amyloid polypeptide fragment 22–28 (IAPP22–28). The diverse behaviors of IAPP22–28 peptides on the surfaces of carbon nanomaterials were studied. The results suggest these nanomaterials can prevent β-sheet formation in differing degrees and further affect the aggregation of IAPP22–28. The π–π stacking and hydrophobic interactions are different in the interactions between peptides and different nanoparticles. The subtle differences in the interaction are due to the difference in surface curvature and area. The results demonstrate the adsorption interaction has competitive advantages over the interactions between peptides. Therefore, the fibrillation of IAPP22–28 may be inhibited at its early stage by graphene or SWCNT. Our study can not only enhance the understanding about potential effects of nanomaterials to amyloid formation, but also provide valuable information to develop potential β-sheet formation inhibitors against type II diabetes.  相似文献   
82.

Background

In the Asia-Pacific region many countries have adopted the WHO’s public health approach to HIV care and treatment. We performed exploratory analyses of the factors associated with first major modification to first-line combination antiretroviral therapy (ART) in resource-rich and resource-limited countries in the region.

Methods

We selected treatment naive HIV-positive adults from the Australian HIV Observational Database (AHOD) and the TREAT Asia HIV Observational Database (TAHOD). We dichotomised each country’s per capita income into high/upper-middle (T-H) and lower-middle/low (T-L). Survival methods stratified by income were used to explore time to first major modification of first-line ART and associated factors. We defined a treatment modification as either initiation of a new class of antiretroviral (ARV) or a substitution of two or more ARV agents from within the same ARV class.

Results

A total of 4250 patients had 961 major modifications to first-line ART in the first five years of therapy. The cumulative incidence (95% CI) of treatment modification was 0.48 (0.44–0.52), 0.33 (0.30–0.36) and 0.21 (0.18–0.23) for AHOD, T-H and T-L respectively. We found no strong associations between typical patient characteristic factors and rates of treatment modification. In AHOD, relative to sites that monitor twice-yearly (both CD4 and HIV RNA-VL), quarterly monitoring corresponded with a doubling of the rate of treatment modifications. In T-H, relative to sites that monitor once-yearly (both CD4 and HIV RNA-VL), monitoring twice-yearly corresponded to a 1.8 factor increase in treatment modifications. In T-L, no sites on average monitored both CD4 & HIV RNA-VL concurrently once-yearly. We found no differences in rates of modifications for once- or twice-yearly CD4 count monitoring.

Conclusions

Low-income countries tended to have lower rates of major modifications made to first-line ART compared to higher-income countries. In higher-income countries, an increased rate of RNA-VL monitoring was associated with increased modifications to first-line ART.  相似文献   
83.
84.
85.
Japanese encephalitis virus (JEV) nonstructural protein 5 (NS5) exhibits a Type I interferon (IFN) antagonistic function. This study characterizes Type I IFN antagonism mechanism of NS5 protein, using proteomic approach. In human neuroblastoma cells, NS5 expression would suppress IFNβ‐induced responses, for example, expression of IFN‐stimulated genes PKR and OAS as well as STAT1 nuclear translocation and phosphorylation. Proteomic analysis showed JEV NS5 downregulating calreticulin, while upregulating cyclophilin A, HSP 60 and stress‐induced‐phosphoprotein 1. Gene silence of calreticulin raised intracellular Ca2+ levels while inhibiting nuclear translocalization of STAT1 and NFAT‐1 in response to IFNβ, thus, indicating calreticulin downregulation linked with Type I IFN antagonism of JEV NS5 via activation of Ca2+/calicineurin. Calcineurin inhibitor cyclosporin A attenuated NS5‐mediated inhibition of IFNβ‐induced responses, for example, IFN‐sensitive response element driven luciferase, STAT1‐dependent PKR mRNA expression, as well as phosphorylation and nuclear translocation of STAT1. Transfection with calcineurin (vs. control) siRNA enhanced nuclear translocalization of STAT1 and upregulated PKR expression in NS5‐expressing cells in response to IFNβ. Results prove Ca2+, calreticulin, and calcineurin involvement in STAT1‐mediated signaling as well as a key role of JEV NS5 in Type I IFN antagonism. This study offers insights into the molecular mechanism of Type I interferon antagonism by JEV NS5.  相似文献   
86.
87.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
88.
Two closely related bacterial species, Segniliparus rotundus and Segniliparus rugosus, have emerged as important human pathogens, but little is known about the immune responses they elicit or their comparative pathophysiologies. To determine the virulence and immune responses of the two species, we compared their abilities to grow in phagocytic and non-phagocytic cells. Both species maintained non-replicating states within A549 epithelial cells. S. rugosus persisted longer and multiplied more rapidly inside murine bone marrow-derived macrophages (BMDMs), induced more pro-inflammatory cytokines, and induced higher levels of macrophage necrosis. Activation of BMDMs by both species was mediated by toll-like receptor 2 (TLR2), followed by mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) signaling pathways, indicating a critical role for TLR2 in Segniliparus-induced macrophage activation. S. rugosus triggered faster and stronger activation of MAPK signaling and IκB degradation, indicating that S. rugosus induces more pro-inflammatory cytokines than S. rotundus. Multifocal granulomatous inflammations in the liver and lung were observed in mice infected with S. rugosus, but S. rotundus was rapidly cleared from all organs tested within 15 days post-infection. Furthermore, S. rugosus induced faster infiltration of innate immune cells such as neutrophils and macrophages to the lung than S. rotundus. Our results suggest that S. rugosus is more virulent and induces a stronger immune response than S. rotundus.  相似文献   
89.

Background

Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR) is associated with daily disease-specific mortality, and how season might modify any association.

Objectives

To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect.

Methods

The distributed lag nonlinear model (DLNM) was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD), cardiovascular disease (CVD), respiratory disease (RD) and cerebrovascular disease (CBD)) in the full year, the cold season and the warm season.

Results

A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days), and then decreased.

Conclusions

Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.  相似文献   
90.
Apelin, a novel adipokine, is the specific endogenous ligand of G protein-coupled receptor APJ. Consistent with its putative role as an adipokine, apelin has been linked to states of insulin resistance. However, the function of apelin in hepatic insulin resistance, a vital part of insulin resistance, and its underlying mechanisms still remains unclear. Here we define the impacts of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes. Our studies indicate that apelin reversed TNF-α-induced reduction of glycogen synthesis in HepG2 cells, mouse primary hepatocytes and liver tissues of C57BL/6J mice by improving JNK-IRS1-AKT-GSK pathway. Moreover, Western blot revealed that APJ, but not apelin, expressed in the hepatocytes and liver tissues of mice. We found that F13A, a competitive antagonist for G protein-coupled receptor APJ, suppressed the effects of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes, suggesting APJ is involved in the function of apelin. In conclusion, we show novel evidence suggesting that apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. Apelin appears as a beneficial adipokine with anti-insulin resistance properties, and thus as a promising therapeutic target in metabolic disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号