首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121415篇
  免费   2447篇
  国内免费   2510篇
  2024年   44篇
  2023年   331篇
  2022年   809篇
  2021年   1478篇
  2020年   1005篇
  2019年   1246篇
  2018年   12734篇
  2017年   11261篇
  2016年   8518篇
  2015年   2524篇
  2014年   2515篇
  2013年   2641篇
  2012年   6839篇
  2011年   14930篇
  2010年   13286篇
  2009年   9372篇
  2008年   11220篇
  2007年   12595篇
  2006年   1477篇
  2005年   1499篇
  2004年   1772篇
  2003年   1720篇
  2002年   1320篇
  2001年   738篇
  2000年   541篇
  1999年   440篇
  1998年   262篇
  1997年   294篇
  1996年   265篇
  1995年   219篇
  1994年   226篇
  1993年   181篇
  1992年   236篇
  1991年   222篇
  1990年   137篇
  1989年   113篇
  1988年   96篇
  1987年   121篇
  1986年   82篇
  1985年   69篇
  1984年   59篇
  1983年   53篇
  1982年   38篇
  1981年   26篇
  1979年   25篇
  1975年   26篇
  1972年   263篇
  1971年   285篇
  1965年   22篇
  1962年   26篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Stroke is a major cause of mortality and the leading cause of permanent disability. In this study, we adopted the classic middle cerebral artery occlusion(MCAO) stroke model to observe the therapeutic effects of coccomyxa gloeobotrydiformis(CGD) on ischemic stroke, and discuss the underlying mechanisms. Low dose (50 mg/kg.day) and high dose (100 mg/kg.day) concentrations of the drug CGD were intragastrically administrated separately for 8 weeks. Infarct volumes, neurologic deficits and degree of stroke-induced brain edema were measured 24 hours after reperfusion. Furthermore, oxidative stress related factors (SOD and MDA), mitochondrial membrane potential, and apoptosis regulatory factors (mitochondrial Cyt-C, Bcl-2, Bax, and caspase-3) were all investigated in this research. We found that CGD attenuated cerebral infarction, brain edema and neurologic deficits; CGD maintained the mitochondrial membrane potential and decreased mitochondrial swelling. It also prevented oxidative damage by reducing MDA and increasing SOD. In addition, CGD could effectively attenuate apoptosis by restoring the level of mitochondrial Cyt C and regulating the expression of Bcl-2, Bax and caspase 3. These results revealed that CGD has a therapeutic effect on ischemic stroke, possibly by inducing mitochondrial protection and anti-apoptotic mechanisms.  相似文献   
992.
The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific‐pathogen‐free and germ‐free wild‐type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment ofneutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88‐dependent way that correlates with increased neutrophil recruitment as compared with germ‐free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue.  相似文献   
993.
Background aimsMany rodent experiments and human studies on stem cell therapy have shown promising therapeutic approaches to liver diseases. We investigated the clinical outcomes of five patients with liver failure of various causes who received autologous CD34-depleted bone marrow-derived mononuclear cell (BM-MNC) transplantation, including mesenchymal stromal cells, through the hepatic artery.MethodsCD34-depleted BM-MNCs were obtained from five patients waiting for liver transplantation by bone marrow aspiration and using the CliniMACS CD34 Reagent System (Miltenyi Biotech, Bergisch Gladbach, Germany), and autologous hepatic artery infusion was performed. The causes of hepatic decompensation were hepatitis B virus (HBV), hepatitis C virus (HCV), propylthiouracil-induced toxic hepatitis and Wilson disease.ResultsSerum albumin levels improved 1 week after transplantation from 2.8 g/dL, 2.4 g/dL, 2.7 g/dL and 1.9 g/dL to 3.3 g/dL, 3.1 g/dL, 2.8 g/dL and 2.6 g/dL. Transient liver elastography data showed some change from 65 kPa, 33 kPa, 34.8 kPa and undetectable to 46.4 kPa, 19.8 kPa, 29.1 kPa and 67.8 kPa at 4 weeks after transplantation in a patient with Wilson disease, a patient with HCV, and two patients with HBV. Ascites decreased in two patients. One of the patients with HBV underwent liver transplantation 4 months after the infusion, and the hepatic progenitor markers (cytokeratin [CD]-7, CD-8, CD-9, CD-18, CD-19, c-Kit and epithelial cell adhesion molecule [EpCAM]) were highly expressed in the explanted liver.ConclusionsSerum albumin levels, liver stiffness, liver volume, subjective healthiness and quality of life improved in the study patients. Although these findings were observed in a small population, the results may suggest a promising future for autologous CD34-depleted BM-MNC transplantation as a bridge to liver transplantation in patients with liver failure.  相似文献   
994.
995.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
996.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
997.

Background

To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression.

Results

Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment.

Conclusions

These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.  相似文献   
998.
Cancer risk in parents may be related to congenital malformations (CMs) in their children if they share genetic susceptibility or environmental exposure that may be teratogenic and carcinogenic. We conducted a population‐based cohort study based on Danish register data. We identified 795,607 mothers and 781,424 fathers who had all their children between 1977 and 2007 in Denmark. Information on CM was obtained from the Danish Hospital Registry and information on cancer was obtained from the Danish Cancer Registry. Parents were followed from the birth of their first child until the diagnosis of cancer, death, emigration, or December 31, 2007. We used Cox regression models to estimate hazard ratios (HRs) for cancer including cancer in specific organs in mothers and fathers. Overall, 75,701 (9.5%) mothers and 72,724 (9.3%) fathers had at least one child diagnosed with CMs within the first year of life. Neither mothers (HR = 1.04; 95% CI: 0.99–1.04) nor fathers (HR = 1.03; 95% CI: 0.98–1.09) who had a child with a CM had a higher overall risk of cancer. Mothers (HR = 0.76, 95% CI: 0.58–1.00) or fathers (HR = 0.89, 95% CI: 0.66–1.19) who had a child with a chromosomal malformation had a lower overall cancer risk. The findings also showed a higher risk for some specific types of cancer in parents who had children with a CM in the specific system. Some, or perhaps all, of these findings may be due to chance caused by multiple comparisons. We present all results on paper or online to provide clues for further research and to avoid publication bias.  相似文献   
999.

Background

Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism.

Methodology/Principal Findings

Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats.

Conclusions/Significance

In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future.  相似文献   
1000.
A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug), tacrolimus (an immunosuppressive agent) and floxuridine (an antimetabolite) were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号