The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min. Total ERK1/2 proteins and phospho-ERK1/2 in the CA1 hippocampus were assayed with Western immunoblot. Total ERK1/2 proteins did not change in period from 5 min to 5 days of reperfusion after preconditioning stimulus. While the level of phospho-ERK1/2 increased obviously to 223, 237, 300, 385 and 254% of sham level at times of 5 min, 2 h, 1, 3 and 5 days after preconditioning stimulus, respectively (P < 0.01). Administration of L-NAME, an inhibitor of NO synthase, 30 min prior to preconditioning stimulus failed to induce change in total ERK1/2 proteins (P > 0.05). However, phospho-ERK1/2 increased only to 138 and 176% of sham level at 2 h and 3 days after preconditioning stimulus, respectively, when animals were pretreated with L-NAME. The magnitudes of the increase were obviously low compared with those (237 and 385%) in animals untreated with L-NAME at corresponding time points (P < 0.01), which indicated that phosphorylation of ERK1/2 normally induced by preconditioning stimulus was blocked apparently by administration of L-NAME. The results suggested that phosphorylation of ERK1/2, rather than synthesis of ERK1/2 proteins, was promoted in brain ischemic preconditioning, and that the promotion was partly mediated by NO signal pathway. 相似文献
In an effort to study the mode of action of Cry11Ba, we identified toxin binding proteins in Anopheles gambiae larval midgut and investigated their receptor roles. Previously, an aminopeptidase (AgAPN2) and an alkaline phosphatase (AgALP1) were identified as receptors for Cry11Ba toxin in A. gambiae. However, an A. gambiae cadherin (AgCad1) that bound Cry11Ba with low affinity (Kd = 766 nM) did not support a receptor role of AgCad1 for Cry11Ba. Here, we studied a second A. gambiae cadherin (AgCad2) that shares 14% identity to AgCad1. Immunohistochemical study showed that the protein is localized on A. gambiae larval midgut apical membranes. Its cDNA was cloned and the protein was analyzed as a transmembrane protein containing 14 cadherin repeats. An Escherichia coli expressed CR14MPED fragment of AgCad2 bound Cry11Ba with high affinity (Kd = 11.8 nM), blocked Cry11Ba binding to A. gambiae brush border vesicles and reduced Cry11Ba toxicity in bioassays. Its binding to Cry11Ba could be completely competed off by AgCad1, but only partially competed by AgALP1. The results are evidence that AgCad2 may function as a receptor for Cry11Ba in A. gambiae larvae. 相似文献
The present study was to test the hypothesis that anti-arrhythmic properties of verapamil may be accompanied by preserving connexin43 (Cx43) protein via calcium influx inhibition. In an in vivo study, myocardial ischemic arrhythmia was induced by occlusion of the left anterior descending (LAD) coronary artery for 45 min in Sprague-Dawley rats. Verapamil, a calcium channel antagonist, was injected i.v. into a femoral vein prior to ischemia. Effects of verapamil on arrhythmias induced by Bay K8644 (a calcium channel agonist) were also determined. In an ex vivo study, the isolated heart underwent an initial 10 min of baseline normal perfusion and was subjected to high calcium perfusion in the absence or presence of verapamil. Cardiac arrhythmia was measured by electrocardiogram (ECG) and Cx43 protein was determined by immunohistochemistry and western blotting. Administration of verapamil prior to myocardial ischemia significantly reduced the incidence of ventricular arrhythmias and total arrhythmia scores, with the reductions in heat rate, mean arterial pressure and left ventricular systolic pressure. Verapamil also inhibited arrhythmias induced by Bay K8644 and high calcium perfusion. Effect of verapamil on ischemic arrhythmia scores was abolished by heptanol, a Cx43 protein uncoupler and Gap 26, a Cx43 channels inhibitor. Immunohistochemistry data showed that ischemia-induced redistribution and reduced immunostaining of Cx43 were prevented by verapamil. In addition, diminished expression of Cx43 protein determined by western blotting was observed following myocardial ischemia in vivo or following high calcium perfusion ex vivo and was preserved after verapamil administration. Our data suggest that verapamil may confer an anti-arrhythmic effect via calcium influx inhibition, inhibition of oxygen consumption and accompanied by preservation of Cx43 protein. 相似文献
DNA methylation is an important epigenetic modification, that is involved in the regulation of gene expression and cell differentiation, and plays an important regulatory role in flower development in higher plants. There are two types of florets on the capitulum in the genus Chrysanthemum, the flower symmetry factor CYCLOIDEA (CYC) 2-like genes may be important candidate genes for determining the identity of the two types of florets. In this study, the diploid plant Chrysanthemum lavandulifolium was used as the research material, and qRT-PCR and bisulfite sequencing polymerase chain reaction (BSP) were used to identify the expression and DNA methylation pattern of CYC2-like genes in the two types of florets. Gene expression analysis showed that the six ClCYC2-like genes were significantly different in the two types of florets, and the expression levels of ClCYC2c, ClCYC2d, ClCYC2e and ClCYC2f in the ray florets were significantly higher than those in the disc florets. For the DNA methylation analysis of the three genes ClCYC2c, ClCYC2d, and ClCYC2e, it was found that the DNA methylation levels of these three genes were negative correlated with their expression levels, and the ways in which the three genes were regulated by the DNA methylation were different. It is speculated that the different DNA methylation of ClCYC2-like genes in the two types of florets may affect the differentiation and development of the two types of florets. This study provides new clues about epigenetics for the analysis of capitulum formation in Asteraceae.
Accumulating data suggested that CXCR4/SDF-1 pathway may play an important role in the metastasis of tumor. We previously demonstrated that CpG ODN could enhance the metastasis of human lung cancer cell via TLR9. Here we further evaluated the possible role of CXCR4/SDF-1 pathway in the enhanced metastasis of human lung cancer 95D cells induced by CpG ODN. Our data showed down-regulation of CXCR4 expression using siRNA against CXCR4 could significantly reduce the enhanced metastasis of 95D cells induced by CpG ODN both in vitro and in vivo. These results suggested that TLR9 agonist might promote the metastasis of human lung cancer cells via CXCR4/SDF-1 pathway. 相似文献
A novel strategy to perform Michael additions between 1,3-dicarbonyl compounds and α,β-unsaturated compounds was developed by the catalysis of hydrolase. We found that 11 hydrolase could catalyze the enzymatic Michael addition reaction to form the carbon–carbon bond. In 2-methyl-2-butanol d-aminoacylase showed high Michael addition activity. The influence of substrate and Michael acceptor structure on Michael addition was evaluated systematically. Some control experiments demonstrated that the active site of d-aminoacylase was responsible for the enzymatic Michael addition reaction. This novel Michael addition activity of hydrolase is of practical significance in expanding the application of enzymes and in the evolution of new biocatalysts. 相似文献
RPMI 1640 culture medium was chosen to simulate body fluids, and after exposure to 0.085 approximately 0.092 T static magnetic fields (SMF), surface tension, pH, dissolved oxygen, and UV-visible spectrum were measured. Compared with the control group in the normal geomagnetic field, the pH value increased about 0.14 units, dissolved oxygen increased about 14%, and the UV-visible spectra were different in peak intensity but without a shift in the peak. Surface tension showed no significant difference in the two groups. This data suggests that SMF can change some of the physical and chemical properties of RPM1 1640 solution, and may contribute to understanding biological effects of SMF. 相似文献