首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19499篇
  免费   1779篇
  国内免费   2129篇
  23407篇
  2024年   55篇
  2023年   291篇
  2022年   604篇
  2021年   983篇
  2020年   717篇
  2019年   858篇
  2018年   886篇
  2017年   589篇
  2016年   813篇
  2015年   1245篇
  2014年   1526篇
  2013年   1584篇
  2012年   1899篇
  2011年   1711篇
  2010年   1103篇
  2009年   1049篇
  2008年   1125篇
  2007年   1061篇
  2006年   867篇
  2005年   709篇
  2004年   636篇
  2003年   544篇
  2002年   462篇
  2001年   309篇
  2000年   295篇
  1999年   269篇
  1998年   188篇
  1997年   154篇
  1996年   145篇
  1995年   96篇
  1994年   122篇
  1993年   66篇
  1992年   86篇
  1991年   68篇
  1990年   61篇
  1989年   40篇
  1988年   34篇
  1987年   21篇
  1986年   16篇
  1985年   25篇
  1984年   13篇
  1983年   16篇
  1982年   15篇
  1980年   4篇
  1978年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1968年   3篇
  1965年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Li  Shasha  Liu  Keke  Yu  Saisai  Jia  Shanshan  Chen  Shuo  Fu  Yuheng  Sun  Feng  Luo  Qiangwei  Wang  Yuejin 《Plant Cell, Tissue and Organ Culture》2020,140(2):389-401
Plant Cell, Tissue and Organ Culture (PCTOC) - The fruit of ‘Dangshansuli’ pear is yellowish green in colour, while that of its mutant ‘Xiusu’ is russet in colour. A...  相似文献   
992.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   
993.
Zhang  Jinxiu  Feng  Haiyan  Lv  Jianhua  Zhao  Liqiang  Zhao  Junxia  Wang  Li-an 《Molecular and cellular biochemistry》2020,474(1-2):277-284
Molecular and Cellular Biochemistry - Autism is a prevalent developmental disorder that combines repetitive behaviours, social deficits and language abnormalities. The present study aims to assess...  相似文献   
994.
LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.  相似文献   
995.
Ji  Jie  Xu  Min-Xue  Qian  Tian-Yang  Zhu  Sheng-Ze  Jiang  Feng  Liu  Zhao-Xiu  Xu  Wei-Song  Zhou  Juan  Xiao  Ming-Bing 《Molecular biology reports》2020,47(8):6091-6103
Molecular Biology Reports - Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all...  相似文献   
996.
Periodontitis is a major cause of tooth loss in adults that initially results from dental plaque. Subgingival plaque pathogenesis is affected by both community composition and plaque structures, although limited data are available concerning the latter. To bridge this knowledge gap, subgingival plaques were obtained using filter paper (the fourth layer) and curette (the first-third layers) sequentially and the phylogenetic differences between the first–third layers and the fourth layer were characterized by sequencing the V3–V4 regions of 16S rRNA. A total of 11 phyla, 148 genera, and 308 species were obtained by bioinformatic analysis, and no significant differences between the operational taxonomic unit numbers were observed for these groups. In both groups, the most abundant species were Porphyromonas gingivalis and Fusobacterium nucleatum. Actinomyces naeslundii, Streptococcus intermedius, and Prevotella intermedia possessed relatively high proportions in the first–third layers; while in the fourth layer, both traditional pathogens (Treponema denticola and Campylobacter rectus) and novel pathobionts (Eubacterium saphenum, Filifactor alocis, Treponema sp. HOT238) were prominent. Network analysis showed that either of them exhibited a scale-free property and was constructed by two negatively correlated components (the pathogen component and the nonpathogen component), while the synergy in the nonpathogen component was lower in the first–third layers than that in the fourth layer. After merging these two parts into a whole plaque group, the negative/positive correlation ratio increased. With potential connections, the first–third layers and the fourth layer showed characteristic key nodes in bacterial networks.  相似文献   
997.
In this study, we purpose to investigate a novel five-gene signature for predicting the prognosis of patients with laryngeal cancer. The laryngeal cancer datasets were obtained from The Cancer Genome Atlas (TCGA). Both univariate and multivariate Cox regression analysis was applied to screening for prognostic differential expressed genes (DEGs), and a novel gene signature was obtained. The performance of this Cox regression model was tested by receiver operating characteristic (ROC) curves and area under the curve (AUC). Further survival analysis for each of the five genes was carried out through the Kaplan-Meier curve and Log-rank test. Totally, 622 DEGs were screened from the TCGA datasets in this study. We construct a five-gene signature through Cox survival analysis. Patients were divided into low- and high-risk groups depending on the median risk score, and a significant difference of the 5-year overall survival was found between these two groups (P < .05). ROC curves verified that this five-gene signature had good performance to predict the prognosis of laryngeal cancer (AUC = 0.862, P < .05). In conclusion, the five-gene signature consist of EMP1, HOXB9, DPY19L2P1, MMP1, and KLHDC7B might be applied as an independent prognosis predictor of laryngeal cancer.  相似文献   
998.
999.
The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.  相似文献   
1000.
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3ʹ UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号