首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11437篇
  免费   968篇
  国内免费   1627篇
  2024年   41篇
  2023年   204篇
  2022年   411篇
  2021年   700篇
  2020年   530篇
  2019年   639篇
  2018年   531篇
  2017年   410篇
  2016年   541篇
  2015年   781篇
  2014年   916篇
  2013年   934篇
  2012年   1126篇
  2011年   986篇
  2010年   581篇
  2009年   516篇
  2008年   625篇
  2007年   472篇
  2006年   448篇
  2005年   394篇
  2004年   373篇
  2003年   277篇
  2002年   257篇
  2001年   203篇
  2000年   176篇
  1999年   155篇
  1998年   120篇
  1997年   99篇
  1996年   72篇
  1995年   93篇
  1994年   61篇
  1993年   50篇
  1992年   52篇
  1991年   45篇
  1990年   39篇
  1989年   46篇
  1988年   25篇
  1987年   23篇
  1986年   18篇
  1985年   20篇
  1984年   13篇
  1983年   16篇
  1982年   8篇
  1981年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Coronary artery disease (CAD) is one of the biggest threats to human life. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of CAD, indicating the possible role in CAD diagnosis. The present study aimed to explore the expression profile of plasma miRNAs and estimate their value in diagnosis for CAD. 67 Non‐CAD control subjects and 88 CAD patients were enrolled. We conducted careful evaluation by RT‐PCR analysis, Spearman rank correlation coefficients analysis, Receiver Operating Characteristic (ROC) curves analysis and so on. The plasma levels of six miRNAs known to be related to CAD were measured and three of them showed obvious expression change. Circulating miR‐29a‐3p, miR‐574‐3p and miR‐574‐5p were all significantly increased. ROC analysis revealed the probability of the three miRNAs as biomarkers with AUCs (areas under the ROC curve) of 0.830, 0.792 and 0.789, respectively. They were significantly correlated with each other in CAD patients, suggesting the possibility of joint diagnosis. The combined AUC was 0.915, much higher than each single miRNA. Therefore, our study revealed three promising biomarkers for early diagnosis of CAD. The combination of these miRNAs may act more effectively than individual ones for CAD diagnosis.  相似文献   
162.
Formononetin is a natural isoflavone compound found mainly in Chinese herbal medicines such as astragalus and red clover. It is considered to be a typical phytooestrogen. In our previous experiments, it was found that formononetin has a two‐way regulatory effect on endothelial cells (ECs): low concentrations promote the proliferation of ECs and high concentrations have an inhibitory effect. To find a specific mechanism of action and provide a better clinical effect, we performed a structural transformation of formononetin and selected better medicinal properties for formononetin modifier J1 and J2 from a variety of modified constructs. The MTT assay measured the effects of drugs on human umbilical vein endothelial cell (HUVEC) activity. Scratch and transwell experiments validated the effects of the drugs on HUVEC migration and invasion. An in vivo assessment effect of the drugs on ovariectomized rats. Long‐chain non‐coding RNA for EWSAT1, which is abnormally highly expressed in HUVEC, was screened by gene chip, and the effect of the drug on its expression was detected by PCR after the drug was applied. The downstream factors and their pathways were analysed, and the changes in the protein levels after drug treatment were evaluated by Western blot. In conclusion, the mechanism of action of formononetin, J1 and J2 on ECs may be through EWSAT1‐TRAF6 and its downstream pathways.  相似文献   
163.
Abnormal mitochondrial fission and mitophagy participate in the pathogenesis of many cardiovascular diseases. Baicalein is a key active component in the roots of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. It has been reported that baicalein can resist cardiotoxicity induced by several stress, but the mechanisms of baicalein operate in the protection of cardiomyocytes need to be researched further. Here we report that baicalein can promote cell survival under oxidative stress by up‐regulating the expression level of MARCH5 in cardiomyocytes. Pre‐treatment cells or mice with baicalein can stabilize the expression of MARCH5, which plays a crucial role in the regulation of mitochondrial network and mitophagy. Overexpressed MARCH5 is able to against H2O2 and ischaemia/reperfusion (I/R) stress by suppressing mitochondrial fission and enhancing mitophagy, and then attenuate cells apoptosis. Altogether, our present study investigated that baicalein exerts a protective effect through regulating KLF4‐MARCH5‐Drp1 pathway, our research also provided a novel theoretical basis for the clinical application of baicalein.  相似文献   
164.
Suboptimal health status (SHS), a physical state between health and disease, is a subclinical and reversible stage of chronic disease. Previous studies have shown alterations in the intestinal microbiota in patients with some chronic diseases. This study aimed to investigate the association between SHS and intestinal microbiota in a case‐control study with 50 SHS individuals and 50 matched healthy controls. Intestinal microbiota was analysed by MiSeq 250PE. Alpha diversity of intestinal microbiota in SHS individuals was higher compared with that of healthy controls (Simpson index, W = 2238, P = .048). Beta diversity was different between SHS and healthy controls (P = .018). At the phylum level, the relative abundance of Verrucomicrobia was higher in the SHS group than that in the controls (W = 2201, P = .049). Compared with that of the control group, nine genera were significantly higher and five genera were lower in abundance in the SHS group (all P < .05). The intestinal microbiota, analysed by a random forest model, was able to distinguish individuals with SHS from the controls, with an area under the curve of 0.79 (95% confidence interval: 0.77‐0.81). We demonstrated that the alteration of intestinal microbiota occurs with SHS, an early stage of disease, which might shed light on the importance of intestinal microbiota in the primary prevention of noncommunicable chronic diseases.  相似文献   
165.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
166.
The case‐control study was designed to investigate the genetic effects of interferon‐gamma (IFN‐γ) rs2069727 and rs1861494 polymorphisms on ankylosing spondylitis (AS) susceptibility in a Chinese Han population. Blood samples were collected from 108 AS patients and 110 healthy controls. IFN‐γ polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP). Hardy‐Weinberg equilibrium (HWE) test was performed in control group. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using chi‐square test to evaluate the association between AS susceptibility and IFN‐γ polymorphisms, and the results were adjusted by logistic regressive analysis. The frequency of rs2069727 CC genotype was much higher in cases than that in controls, suggested its significant association with increased AS risk (adjusted OR = 5.899, 95% CI = 1.563‐22.261; P = .009). In addition, C allele also showed close association with increased risk of AS (adjusted OR = 2.052, 95% CI = 1.286‐1.704, P  = 0 .003). While the genotype and allele frequencies of IFN‐γ rs1861494 polymorphism were not significantly different between patients and controls (P  > 0.05 for all), IFN‐γ rs2069727 polymorphism is significantly associated with increased AS risk in a Chinese Han Population.  相似文献   
167.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   
168.
Output voltage and self‐discharge rate are two important performance indices for supercapacitors, which have long been overlooked, though these play a very significant role in their practical application. Here, a zinc anode is used to construct a zinc ion hybrid capacitor. Expanded operating voltage of the hybrid capacitor is obtained with novel electrolytes. In addition, significantly improved anti‐self‐discharge ability is achieved. The phosphorene‐based zinc ion capacitor exploiting a “water in salt” electrolyte with a working potential can reach 2.2 V, delivering 214.3 F g?1 after 5000 cycles. The operating voltage is further extended to 2.5 V through the use of an organic solvent as the electrolyte; the solvent is prepared by adding 0.2 m ZnCl2 into the tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4/PC) solvent, and it exhibits 105.9 F g?1 even after 9500 cycles. More importantly, the phosphorene‐based capacitors possess excellent anti‐self‐discharge performance. The capacitors retain 76.16% of capacitance after resting for 300 h. The practical application of the zinc ion capacitor is demonstrated through a flexible paper‐based printed microcapacitor. It is believed that the developed zinc ion capacitor can effectively resolve the severe self‐discharge problem of supercapacitors. Moreover, high‐voltage zinc ion capacitors provide more opportunities for the application of supercapacitors.  相似文献   
169.
A series of aryloxyethylamine derivatives were designed, synthesized and evaluated for their biological activity. Their structures were confirmed by 1H‐NMR, 13C‐NMR, FT‐IR and HR‐ESI‐MS. The preliminary screening of neuroprotection of compounds in vitro was detected by MTT, and the anti‐ischemic activity in vivo was tested using bilateral common carotid artery occlusion in mice. Most of these compounds showed potential neuroprotective effects against the glutamate‐induced cell death in differentiated rat pheochromocytoma cells (PC12 cells), especially for (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone, (4‐bromophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, (4‐chlorophenyl)(1‐{2‐[(naphthalen‐2‐yl)oxy]ethyl}piperidin‐4‐yl)methanone, (4‐chlorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone and {1‐[2‐(4‐bromophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, which exhibited potent protection of PC12 cells at three doses (0.1, 1.0, 10 μM). Compounds (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, (4‐fluorophenyl){1‐[2‐(naphthalen‐2‐yloxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed the significant prolongation of the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all five doses tested (200, 100, 50, 25, 12.5 mg/kg) and had significant neuroprotective activity. In addition, (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed outstanding neuroprotection in vitro and in vivo. These compounds can be used as a promising neuroprotective agents for future development of new anti‐ischemic stroke agents. Basic structure–activity relationships are also presented.  相似文献   
170.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号