全文获取类型
收费全文 | 25891篇 |
免费 | 2139篇 |
国内免费 | 2184篇 |
专业分类
30214篇 |
出版年
2024年 | 73篇 |
2023年 | 362篇 |
2022年 | 828篇 |
2021年 | 1377篇 |
2020年 | 891篇 |
2019年 | 1077篇 |
2018年 | 1035篇 |
2017年 | 763篇 |
2016年 | 1068篇 |
2015年 | 1578篇 |
2014年 | 1864篇 |
2013年 | 1972篇 |
2012年 | 2408篇 |
2011年 | 2059篇 |
2010年 | 1307篇 |
2009年 | 1042篇 |
2008年 | 1408篇 |
2007年 | 1177篇 |
2006年 | 1072篇 |
2005年 | 904篇 |
2004年 | 750篇 |
2003年 | 642篇 |
2002年 | 581篇 |
2001年 | 492篇 |
2000年 | 378篇 |
1999年 | 431篇 |
1998年 | 255篇 |
1997年 | 218篇 |
1996年 | 256篇 |
1995年 | 206篇 |
1994年 | 252篇 |
1993年 | 154篇 |
1992年 | 223篇 |
1991年 | 187篇 |
1990年 | 175篇 |
1989年 | 114篇 |
1988年 | 83篇 |
1987年 | 75篇 |
1986年 | 51篇 |
1985年 | 64篇 |
1984年 | 50篇 |
1983年 | 40篇 |
1982年 | 37篇 |
1981年 | 24篇 |
1980年 | 16篇 |
1979年 | 25篇 |
1977年 | 15篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1973年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Liu T Yu H Zhang C Lu M Piao Y Ohba M Tang M Yuan X Wei S Wang K Ma A Feng X Qin S Mukai C Tsuji A Jin F 《Applied and environmental microbiology》2012,78(13):4752-4754
A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13. 相似文献
142.
Huo Y Guo X Li H Xu H Halim V Zhang W Wang H Fan YY Ong KT Woo SL Chapkin RS Mashek DG Chen Y Dong H Lu F Wei L Wu C 《The Journal of biological chemistry》2012,287(25):21492-21500
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. 相似文献
143.
Use of atomic force microscopy (AFM) has recently led to a better understanding of the molecular mechanisms of the unfolding process by mechanical forces; however, the rational design of novel proteins with specific mechanical strength remains challenging. We have approached this problem from a new perspective that generates linear physical–chemical properties (PCP) motifs from a limited AFM data set. Guided by our linear sequence analysis, we designed and analyzed four new mutants of the titin I1 domain with the goal of increasing the domain's mechanical strength. All four mutants could be cloned and expressed as soluble proteins. AFM data indicate that at least two of the mutants have increased molecular mechanical strength. This observation suggests that the PCP method is useful to graft sequences specific for high mechanical stability to weak proteins to increase their mechanical stability, and represents an additional tool in the design of novel proteins besides steered molecular dynamics calculations, coarse grained simulations, and ?‐value analysis of the transition state. Proteins 2012; © 2011 Wiley Periodicals, Inc. 相似文献
144.
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180?mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270?mg/L isobutanol and 40?mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14?g/L branched-chain alcohols over the duration of 50?days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. 相似文献
145.
146.
147.
148.
149.
Di Xiang Jing Zhang Yizhe Chen Yiping Guo Adrian Schalow Zhonghui Zhang Xiaojia Hu Hongjing Yu Mei Zhao Shunying Zhu Huili Lu Mingyuan Wu Yan Yu Anja Moldenhauer Wei Han 《Protein expression and purification》2010,69(2):153-158
Chemerin is a novel chemokine that binds to the G protein-coupled receptor (GPCR) ChemR23, also known as chemokine-like receptor 1 (CMKLR1). It is secreted as a precursor and executes pro-inflammatory functions when the last six amino acids are removed from its C-terminus by serine proteases. After maturation, Chemerin attracts dendritic cells and macrophages through binding to ChemR23. We report a new method for expression and purification of mature recombinant human Chemerin (rhChemerin) using a prokaryotic system. After being expressed in bacteria, rhChemerin in inclusion bodies was denatured using 6 M guanidine chloride. Soluble rhChemerin was prepared by the protein-specific renaturation solution under defined conditions. It was subsequently purified using ion-exchange columns to more than 95% purity with endotoxin level <1.0 EU/μg. We further demonstrated its biological activities for attracting migration of human dendritic cells and murine macrophages in vitro using established chemotaxis assays. 相似文献
150.
Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi’s sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.
相似文献