首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19373篇
  免费   1510篇
  国内免费   1830篇
  22713篇
  2024年   52篇
  2023年   268篇
  2022年   660篇
  2021年   1097篇
  2020年   728篇
  2019年   869篇
  2018年   832篇
  2017年   571篇
  2016年   809篇
  2015年   1198篇
  2014年   1453篇
  2013年   1522篇
  2012年   1814篇
  2011年   1606篇
  2010年   980篇
  2009年   883篇
  2008年   984篇
  2007年   889篇
  2006年   796篇
  2005年   735篇
  2004年   585篇
  2003年   521篇
  2002年   417篇
  2001年   308篇
  2000年   281篇
  1999年   285篇
  1998年   176篇
  1997年   163篇
  1996年   194篇
  1995年   144篇
  1994年   158篇
  1993年   101篇
  1992年   115篇
  1991年   115篇
  1990年   82篇
  1989年   73篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
911.
Highlights:
The biosensor reported in our study can monitor SARS-CoV-2 Mpro activity in living cells instead of in vitro solutions.
The biosensor reported in our study is sensitive and easy to operate.
It is suitable for high-throughput screening.
It has the potential to be used in small animal models.  相似文献   
912.
Long non-coding RNAs (lncRNAs) have previously been implicated in human disease states, especially cancer. Although the aberrant expression of lncRNAs has been observed in cancer, the biological functions and molecular mechanisms underlying aberrantly expressed lncRNAs in hepatocellular carcinoma (HCC) have not been widely established. In the present study, we investigated a novel lncRNA, termed URHC (up-regulated in hepatocellular carcinoma), and evaluated its role in the progression of HCC. Expression profiling using a lncRNA microarray revealed that URHC was highly expressed in 3 HCC cell lines compared to normal hepatocytes. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses confirmed that URHC expression was increased in hepatoma cells and HCC tissues. Moreover, using qRT-PCR, we confirmed that URHC expression was up-regulated in 30 HCC cases (57.7%) and that its higher expression was correlated with poor overall survival. We further demonstrated that URHC inhibition reduced cell proliferation and promoted apoptosis. We hypothesize that URHC may function by regulating the sterile alpha motif and leucine zipper containing kinase AZK (ZAK) gene, which is located near URHC on the same chromosome. We found that ZAK mRNA levels were down-regulated in HCC tissues and the expression levels of ZAK were negatively correlated with those of URHC in the above HCC tissues. Next, we confirmed that URHC down-regulated ZAK, which is involved in URHC-mediated cell proliferation and apoptosis. Furthermore, ERK/MAPK pathway inactivation partially accounted for URHC-ZAK-induced cell growth and apoptosis. Thus, we concluded that high URHC expression can promote cell proliferation and inhibit apoptosis by repressing ZAK expression through inactivation of the ERK/MAPK pathway. These findings may provide a novel mechanism and therapeutic targets for the treatment of HCC.  相似文献   
913.

Background

The ST239 lineage is a globally disseminated, multiply drug-resistant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA). We performed whole-genome sequencing of representative HA-MRSA isolates of the ST239 lineage from bacteremic patients in hospitals in Hong Kong (HK) and Beijing (BJ) and compared them with three published complete genomes of ST239, namely T0131, TW20 and JKD6008. Orthologous gene group (OGG) analyses of the Hong Kong and Beijing cluster strains were also undertaken.

Results

Homology analysis, based on highest-percentage nucleotide identity, indicated that HK isolates were closely related to TW20, whereas BJ isolates were more closely related to T0131 from Tianjin. Phylogenetic analysis, incorporating a total of 30 isolates from different continents, revealed that strains from HK clustered with TW20 into the ‘Asian clade’, whereas BJ isolates and T0131 clustered closely with strains of the ‘Turkish clade’ from Eastern Europe. HK isolates contained the typical φSPβ-like prophage with the SasX gene similar to TW20. In contrast, BJ isolates contained a unique 15 kb PT1028-like prophage but lacked φSPβ-like and φSA1 prophages. Besides distinct mobile genetic elements (MGE) in the two clusters, OGG analyses and whole-genome alignment of these clusters highlighted differences in genes located in the core genome, including the identification of single nucleotide deletions in several genes, resulting in frameshift mutations and the subsequent predicted truncation of encoded proteins involved in metabolism and antimicrobial resistance.

Conclusions

Comparative genomics, based on de novo assembly and deep sequencing of HK and BJ strains, revealed different origins of the ST239 lineage in northern and southern China and identified differences between the two clades at single nucleotide polymorphism (SNP), core gene and MGE levels. The results suggest that ST239 strains isolated in Hong Kong since the 1990s belong to the Asian clade, present mainly in southern Asia, whereas those that emerged in northern China were of a distinct origin, reflecting the complexity of dissemination and the dynamic evolution of this ST239 lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-529) contains supplementary material, which is available to authorized users.  相似文献   
914.
This study aimed to explore the clinical practice of phospholipid metabolic pathways in COVID-19. In this study, 48 COVID-19 patients and 17 healthy controls were included. Patients were divided into mild (n=40) and severe (n=8) according to their severity. Phospholipid metabolites, TCA circulating metabolites, eicosanoid metabolites, and closely associated enzymes and transfer proteins were detected in the plasma of all individuals using metabolomics and proteomics assays, respectively. 30 of the 33 metabolites found differed significantly (P<0.05) between patients and healthy controls (P<0.05), with D-dimmer significantly correlated with all of the lysophospholipid metabolites (LysoPE, LysoPC, LysoPI and LPA). In particular, we found that phosphatidylinositol (PI) and phosphatidylcholine (PC) could identify patients from healthy controls (AUC 0.771 and 0.745, respectively) and that the severity of the patients could be determined (AUC 0.663 and 0.809, respectively). The last measurement before discharge also revealed significant changes in both PI and PC. For the first time, our study explores the significance of the phospholipid metabolic system in COVID-19 patients. Based on molecular pathway mechanisms, three important phospholipid pathways related to Ceramide-Malate acid (Cer-SM), Lysophospholipid (LPs), and membrane function were established. Clinical values discovered included the role of Cer in maintaining the inflammatory internal environment, the modulation of procoagulant LPA by upstream fibrinolytic metabolites, and the role of PI and PC in predicting disease aggravation.  相似文献   
915.
916.
Osteoporosis is a bone disease that is caused by disorder of the skeletal microenvironment, and it characterized by a high disability rate and the occurrence of low energy fractures. Studies on osteoporosis and related treatment options have always been hot spots in the field of bone biology. In the past, the understanding of osteoporosis has been rather limited; research has only shown that osteoporosis involves the imbalance of bone resorption and bone formation, and recent studies have not provided cutting‐edge theories of the basic understanding of osteoporosis. Recent studies have shown crosstalk between bone and immune responses. RANKL, an essential factor for osteoclasts (OCs), is associated with the immune system. T helper (Th17)/regulatory T (Treg) cells are two different kinds of T cells that can self‐interact and regulate the differentiation and formation of OCs. Therefore, understanding the correlation between the skeletal and immune systems and further revealing the roles and the cooperation between RANKL and the Th17/Treg balance will help to provide new insights for the treatment of osteoporosis.  相似文献   
917.
918.
Environmental and exogenous/ endogenous factors, in a setting of individual genetic predisposition, contribute to the cancer development. Over the years, epidemical evidence increasingly highlights the correlations of multiple cancer incentives and genetic alterations with cancer incidence. Unraveling the pivotal carcinogenesis events prompted by particular risk factors remarkably advances early surveillance and oncogenesis intervening. Traditional cell-based models and animal-based models are unrealistic and unreliable for translational study, respectively ascribing to the limited tumor heterogeneity and species-related variation. Organoid emerged as a fidelity model that well preserves the properties of its origin. With inherent quality of holistic perspective, organoid is therefore ideally suited for delineating the carcinogenesis under risk exposure, in favor of understanding pathogen-host interactions and alleviating cancer initiation. In this review, we have summarized the organoid model-based evidence that identified or validated carcinogenic risks, mainly including diet, aging, microbial infection, and chemical exposure. In addition, we envisioned the exciting prospect of organoid model in screening promising treatment and/or prevention during tumorigenesis. As a robust 3D in vitro system, organoid has been widespread applied in basial and clinical cancer research, which may elucidate crucial mechanisms of oncogenesis and develop novel targeting strategies.  相似文献   
919.
血清多肽是癌症诊断信息的重要来源,建立、优化了检测多肽标志物的直接ELISA法,并应用于肝癌血清中的多肽标志物的检测。制备及纯化针对多肽标志物Pep5的单克隆抗体并进行辣根过氧化物酶标记,用其建立检测相应抗原的直接ELISA法。方法线性范围为1.5-20 ng/mL,检测限为1.24 ng/mL;标准品批内及批间CV分别小于3.66%及4.89%,血清样本批内及批间CV分别小于11.69%及18.18%;线性范围内(9、12和15 ng/mL)的回收率分别为98.98%,99.61%和101.58%。应用该方法共检测160例正常血清、104例肝硬化及156例肝癌患者血清,正常组与肝硬化组及肝癌组间差异显著(P<0.001),Pep5诊断肝癌的敏感性和特异性分别为80.8%和96.2%。同时检测94例HCC血清中的AFP和Pep5,AFP检出率为63.8%,Pep5检出率为90.4%,AFP联合Pep5检测时,能将HCC的检出率提高至94.7%。  相似文献   
920.
采用正交设计L9(34)对影响葡萄ISSR-PCR反应体系的4个因素(dNTP、TaqDNA聚合酶、引物、模板DNA)在3个浓度水平上进行试验,并通过直观分析初步确定其反应体系;在此基础上,通过单因素试验探讨了dNTP、TaqDNA聚合酶、引物、模板DNA、退火温度及循环次数等因素或条件对葡萄ISSR-PCR扩增结果的影响,确定最佳反应水平。最终建立了葡萄ISSR-PCR扩增的最佳反应体系:在25μL的反应体系中,dNTP浓度0.2 mmol/L,TaqDNA聚合酶的用量0.5 U,引物浓度0.4mmol/L,DNA模板用量40 ng。反应程序:94℃预变性5 min;94℃变性1 min,52℃退火1 min,72℃延伸1 min 30 s,40次循环;最后72℃延伸10 min,10℃保存。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号