首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3755篇
  免费   231篇
  国内免费   372篇
  2024年   11篇
  2023年   69篇
  2022年   111篇
  2021年   234篇
  2020年   151篇
  2019年   168篇
  2018年   155篇
  2017年   103篇
  2016年   157篇
  2015年   223篇
  2014年   296篇
  2013年   315篇
  2012年   369篇
  2011年   320篇
  2010年   174篇
  2009年   148篇
  2008年   181篇
  2007年   192篇
  2006年   169篇
  2005年   148篇
  2004年   106篇
  2003年   101篇
  2002年   93篇
  2001年   32篇
  2000年   36篇
  1999年   47篇
  1998年   30篇
  1997年   20篇
  1996年   27篇
  1995年   26篇
  1994年   16篇
  1993年   16篇
  1992年   21篇
  1991年   21篇
  1990年   12篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1974年   2篇
  1971年   1篇
  1966年   2篇
排序方式: 共有4358条查询结果,搜索用时 31 毫秒
951.
The epithelium of the small intestinal crypt, which has a vital role in protecting the underlying tissue from the harsh intestinal environment, is completely renewed every 4–5 days by a small pool of stem cells at the base of each crypt. How is this renewal controlled and homeostasis maintained, particularly given the rapid nature of this process? Here, based on the recent observations from in vitro “mini gut” studies, we use a hybrid stochastic model of the crypt to investigate how exogenous niche signaling (from Wnt and BMP) combines with auto-regulation to promote homeostasis. This model builds on the sub-cellular element method to account for the three-dimensional structure of the crypt, external regulation by Wnt and BMP, internal regulation by Notch signaling, as well as regulation by internally generated diffusible signals. Results show that Paneth cell derived Wnt signals, which have been observed experimentally to sustain crypts in cultured organs, have a dramatically different influence on niche dynamics than does mesenchyme derived Wnt. While this signaling can indeed act as a redundant backup to the exogenous gradient, it introduces a positive feedback that destabilizes the niche and causes its uncontrolled expansion. We find that in this setting, BMP has a critical role in constraining this expansion, consistent with observations that its removal leads to crypt fission. Further results also point to a new hypothesis for the role of Ephrin mediated motility of Paneth cells, specifically that it is required to constrain niche expansion and maintain the crypt’s spatial structure. Combined, these provide an alternative view of crypt homeostasis where the niche is in a constant state of expansion and the spatial structure of the crypt arises as a balance between this expansion and the action of various sources of negative regulation that hold it in check.  相似文献   
952.
953.
Methicillin-resistant Staphylococcus aureus(MRSA) is an increasing cause of serious infection,both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection are narrowing because of the limited number of newly developed antimicrobials. Here, four newly-isolated MRSA-virulent phages, IME-SA1, IMESA2, IME-SA118 and IME-SA119, were sequenced and analyzed. Their genome termini were identified using our previously proposed "termini analysis theory". We provide evidence that remarkable conserved terminus sequences are found in IME-SA1/2/118/119, and, moreover, are widespread throughout Twortlikevirus Staphylococcus phage G1 and K species. Results also suggested that each phage of the two species has conserved 5′ terminus while the 3′ terminus is variable. More importantly, a variable region with a specific pattern was found to be present near the conserved terminus of Twortlikevirus S. phage G1 species. The clone with the longest variable region had variable terminus lengths in successive generations, while the clones with the shortest variable region and with the average length variable region maintained the same terminal length as themselves during successive generations. IME-SA1 bacterial infection experiments showed that the variation is not derived from adaptation of the phage to different host strains. This is the first study of the conserved terminus and variable region of Twortlikevirus S. phages.  相似文献   
954.

Background

Amino acid (aa) 70 substitution (R70Q/H) in the core protein of hepatitis C virus (HCV) genotype 1b has been shown to be one of the key factors in determining resistance for pegylated interferon-α plus ribavirin combination therapy (PEG-IFNα/RBV). But the exact mechanisms remain unclear. The aim of this study was to investigate the dynamic response of wild and mutant core codon 70 strains to PEG-IFNα/RBV treatment.

Methods

One hundred twelve Chinese patients with chronic HCV 1b infection were enrolled and received a standard protocol of 48 weeks of PEG-IFNα/RBV therapy and 24 consecutive weeks of follow-up. Serial blood samples were obtained at pretreatment baseline, and again at weeks 2, 4, 8, 12, and 24 during therapy for the quantification of 70R and 70Q/H strains. Dynamic characteristics and association with early virological response (EVR), sustained virological response (SVR) and IL28B genotypes were analyzed.

Results

Of the 112 patients enrolled in this study, 93.8 % (105/112) were infected with mixture of 70R and 70Q/H strains before treatment. The 70Q/H strain was dominant in 20.5 % of patients. 42.9 % of patients with dominant 70Q/H exhibited EVR versus 88.6 % of patients with dominant 70R (P?<?0.001). Furthermore, 35.0 % of patients with dominant 70Q/H exhibited SVR versus 77.4 % with dominant 70R (P?<?0.001). However, regardless of the dominant strain, virological response types or the IL28B SNP genotypes, 70Q/H strains always exhibited the same response to treatment as the 70R strains and the percentage of HCV harboring the 70Q/H substitution did not change significantly during treatment.

Conclusions

Although the ratio of 70Q/H to 70R is related to the virological response, 70Q/H strains always exhibited the same response as the 70R strains during PEG-IFNα/RBV treatment. Substitution of R70Q/H alone is not enough to lead to resistance to therapy. Positive selection for 70Q/H induced by IFNα was not observed.
  相似文献   
955.
The analysis of river pollution and assessment of spatial and temporal variation in hydrochemistry is essential for control of river water pollution in China. Here, we investigated water quality issues based on an analysis of monitoring data from 32 sites in the Luanhe River Basin in northern China. During 2000–2010, flow and 12 hydrochemical parameters were monitored monthly in the main channel and breach streams. Hydrochemical characteristics of river water were assessed using the water quality identification index. Our results showed that concentrations were not necessarily related to flow. Flow was greatest in summer, but concentrations of nutrients and some heavy metal indicators were smallest in autumn; flow was smallest and concentrations of nutrients were greatest in winter, and concentrations of metals were greatest in spring. Hydrochemical parameters showed significant spatial variation as well; the most seriously polluted sites are located in urban areas, mainly due to discharge of wastewater from domestic and industrial sources. Sites with large and intermediate levels of pollution were located primarily in the main river channel and the larger tributaries, whereas sites of low-level pollution were in the smaller tributaries. Our findings provide valuable information for water pollution control in the Luanhe River Basin.  相似文献   
956.
957.
Atherosclerotic disease is a leading cause of morbidity and mortality in developed countries, and oxidized LDL (OxLDL) plays a key role in the formation, rupture, and subsequent thrombus formation in atherosclerotic plaques. In the current study, anti-mouse OxLDL polyclonal antibody and nonspecific IgG antibody were conjugated to polyethylene glycol-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, and a carotid perivascular collar model in apolipoprotein E-deficient mice was imaged at 7.0 Tesla MRI before contrast administration and at 8 h and 24 h after injection of 30 mg Fe/kg. The results showed MRI signal loss in the carotid atherosclerotic lesions after administration of targeted anti-OxLDL-USPIO at 8 h and 24 h, which is consistent with the presence of the nanoparticles in the lesions. Immunohistochemistry confirmed the colocalization of the OxLDL/macrophages and iron oxide nanoparticles. The nonspecific IgG-USPIO, unconjugated USPIO nanoparticles, and competitive inhibition groups had limited signal changes (p < 0.05). This report shows that anti-OxLDL-USPIO nanoparticles can be used to directly detect OxLDL and image atherosclerotic lesions within 24 h of nanoparticle administration and suggests a strategy for the therapeutic evaluation of atherosclerotic plaques in vivo.  相似文献   
958.
BIX-01294 and its analogs were originally identified and subsequently designed as potent inhibitors against histone H3 lysine 9 (H3K9) methyltransferases G9a and G9a-like protein. Here, we show that BIX-01294 and its analog E67 can also inhibit H3K9 Jumonji demethylase KIAA1718 with half-maximal inhibitory concentrations in low micromolar range. Crystallographic analysis of KIAA1718 Jumonji domain in complex with E67 indicated that the benzylated six-membered piperidine ring was disordered and exposed to solvent. Removing the moiety (generating compound E67-2) has no effect on the potency against KIAA1718 but, unexpectedly, lost inhibition against G9a-like protein by a factor of 1500. Furthermore, E67 and E67-2 have no effect on the activity against histone H3 lysine 4 (H3K4) demethylase JARID1C. Thus, our study provides a new avenue for designing and improving the potency and selectivity of inhibitors against H3K9 Jumonji demethylases over H3K9 methyltransferases and H3K4 demethylases.  相似文献   
959.
Regulatory T (Treg) cells play a protective role against the development of atherosclerosis. Previous studies have revealed Treg cell defects in patients with non-ST elevation acute coronary syndrome (NSTACS), but the mechanisms underlying these defects remain unclear. In this study, we found that the numbers of peripheral blood CD4+CD25+CD127low Treg cells and CD4+CD25+CD127lowCD45RA+CD45RO naive Treg cells were lower in the NSTACS patients than in the chronic stable angina (CSA) and the chest pain syndrome (CPS) patients. However, the number of CD4+CD25+CD127lowCD45RACD45RO+ memory Treg cells was comparable in all of the groups. The frequency of CD4+CD25+CD127lowCD45ROCD45RA+CD31+ recent thymic emigrant Treg cells and the T cell receptor excision circle content of purified Treg cells were lower in the NSTACS patients than in the CSA patients and the CPS controls. The spontaneous apoptosis of Treg cells (defined as CD4+CD25+CD127lowannexin V+7-AAD) was increased in the NSTACS patients compared with the CSA and CPS groups. Furthermore, oxidized LDL could induce Treg cell apoptosis, and the oxidized LDL levels were significantly higher in the NSTACS patients than in the CSA and CPS groups. In accordance with the altered Treg cell levels, the concentration of TNF-α was increased in the NSTACS patients, resulting in a decreased IL-10/TNF-α ratio. These findings indicate that the impaired thymic output of Treg cells and their enhanced susceptibility to apoptosis in the periphery were responsible for Treg cell defects observed in the NSTACS patients.  相似文献   
960.
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号