首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2432篇
  免费   191篇
  国内免费   142篇
  2024年   4篇
  2023年   25篇
  2022年   60篇
  2021年   105篇
  2020年   71篇
  2019年   79篇
  2018年   76篇
  2017年   61篇
  2016年   99篇
  2015年   161篇
  2014年   190篇
  2013年   176篇
  2012年   217篇
  2011年   190篇
  2010年   115篇
  2009年   95篇
  2008年   121篇
  2007年   112篇
  2006年   99篇
  2005年   83篇
  2004年   93篇
  2003年   56篇
  2002年   56篇
  2001年   28篇
  2000年   33篇
  1999年   39篇
  1998年   23篇
  1997年   26篇
  1996年   20篇
  1995年   23篇
  1994年   16篇
  1993年   20篇
  1992年   22篇
  1991年   11篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   14篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1976年   6篇
  1974年   6篇
  1972年   4篇
  1966年   3篇
  1965年   6篇
排序方式: 共有2765条查询结果,搜索用时 334 毫秒
171.
172.
Cyanobacteria are globally important primary producers that have an exceptionally large iron requirement for photosynthesis. In many aquatic ecosystems, the levels of dissolved iron are so low and some of the chemical species so unreactive that growth of cyanobacteria is impaired. Pathways of iron uptake through cyanobacterial membranes are now being elucidated, but the molecular details are still largely unknown. Here we report that the non-siderophore-producing cyanobacterium Synechocystis sp. PCC 6803 contains three exbB-exbD gene clusters that are obligatorily required for growth and are involved in iron acquisition. The three exbB-exbDs are redundant, but single and double mutants have reduced rates of iron uptake compared with wild-type cells, and the triple mutant appeared to be lethal. Short-term measurements in chemically well-defined medium show that iron uptake by Synechocystis depends on inorganic iron (Fe′) concentration and ExbB-ExbD complexes are essentially required for the Fe′ transport process. Although transport of iron bound to a model siderophore, ferrioxamine B, is also reduced in the exbB-exbD mutants, the rate of uptake at similar total [Fe] is about 800-fold slower than Fe′, suggesting that hydroxamate siderophore iron uptake may be less ecologically relevant than free iron. These results provide the first evidence that ExbB-ExbD is involved in inorganic iron uptake and is an essential part of the iron acquisition pathway in cyanobacteria. The involvement of an ExbB-ExbD system for inorganic iron uptake may allow cyanobacteria to more tightly maintain iron homeostasis, particularly in variable environments where iron concentrations range from limiting to sufficient.  相似文献   
173.
PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.  相似文献   
174.
The accumulation of fatty acid ethyl esters (FAEEs) in meconium of term newborns has been described as one potential biomarker of maternal alcohol use during pregnancy. FAEEs accumulate in multiple alcohol-exposed fetal tissues and in the placenta. Limited research has focused on the identification of the premature newborn exposed to alcohol in utero. We hypothesized that maternal alcohol use occurs in a significant proportion of premature deliveries and that this exposure can be detected as elevated placental FAEEs. The goals of this study were to 1) determine the prevalence of maternal alcohol use in the premature newborn and 2) investigate whether placental FAEEs could identify those newborns with fetal alcohol exposure. This prospective observational study evaluated 80 placentas from 80 women after premature delivery. Subjects were interviewed for alcohol intake and placental FAEEs were quantified via GC/MS. Receiver Operator Characteristic (ROC) Curves were generated to evaluate the ability of placental FAEEs to predict maternal drinking during pregnancy. Adjusted ROC curves were generated to adjust for gestational age, maternal smoking, and illicit drug use. 30% of the subjects admitted to drinking alcohol during pregnancy and approximately 14% answered questions indicative of problem drinking (designated AUDIT+). The specific FAEEs ethyl stearate and linoleate, as well as combinations of oleate + linoleate + linolenate (OLL) and of OLL + stearate, were significantly (p<0.05) elevated in placentas from AUDIT+ pregnancies. Adjusted ROC Curves generated areas under the curve ranging from 88–93% with negative predictive values of 97% for AUDIT+ pregnancies. We conclude that nearly one third of premature pregnancies were alcohol-exposed, and that elevated placental FAEEs hold great promise to accurately determine maternal alcohol use, particularly heavy use, in pregnancies complicated by premature delivery.  相似文献   
175.
176.
177.
178.
Substantial evidence has shown that microRNAs (miRNAs) may be causally linked to the occurrence and progression of human diseases. Herein, we conducted an enrichment analysis to identify potential functional miRNA-disease associations (MDAs) in humans by integrating currently known biological data: miRNA-target interactions (MTIs), protein-protein interactions, and gene-disease associations. Two contributing factors to functional miRNA-disease associations were quantitatively considered: the direct effects of miRNA that target disease-related genes, and indirect effects triggered by protein-protein interactions. Ninety-nine miRNAs were scanned for possible functional association with 2223 MeSH-defined human diseases. Each miRNA was experimentally validated to target ≥ 10 mRNA genes. Putative MDAs were identified when at least one MTI was confidently validated for a disease. Overall, 19648 putative MDAs were found, of which 10.0% was experimentally validated. Further results suggest that filtering for miRNAs that target a greater number of disease-related genes (n ≥ 8) can significantly enrich for true MDAs from the set of putative associations (enrichment rate = 60.7%, adjusted hypergeometric p = 2.41×10−91). Considering the indirect effects of miRNAs further elevated the enrichment rate to 72.6%. By using this method, a novel MDA between miR-24 and ovarian cancer was found. Compared with scramble miRNA overexpression of miR-24 was validated to remarkably induce ovarian cancer cells apoptosis. Our study provides novel insight into factors contributing to functional MDAs by integrating large quantities of previously generated biological data, and establishes a feasible method to identify plausible associations with high confidence.  相似文献   
179.

Purpose

Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP)-induced sepsis in mice.

Methods

C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation.

Results

Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05). Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis.

Conclusions

Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.  相似文献   
180.
Homologous recombination and non-homologous end joining are two major DNA double-strand-break repair pathways. While HR-mediated repair requires a homologous sequence as the guiding template to restore the damage site precisely, NHEJ-mediated repair ligates the DNA lesion directly and increases the risk of losing nucleotides. Therefore, how a cell regulates the balance between HR and NHEJ has become an important issue for maintaining genomic integrity over time. Here we report that SIRT1-dependent KAP1 deacetylation positively regulates NHEJ. We show that up-regulation of KAP1 attenuates HR efficiency while promoting NHEJ repair. Moreover, SIRT1-mediated KAP1 deacetylation further enhances the effect of NHEJ by stabilizing its interaction with 53BP1, which leads to increased 53BP1 focus formation in response to DNA damage. Taken together, our study suggests a SIRT1-KAP1 regulatory mechanism for HR-NHEJ repair pathway choice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号