首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21086篇
  免费   1694篇
  国内免费   1743篇
  24523篇
  2024年   56篇
  2023年   319篇
  2022年   721篇
  2021年   1164篇
  2020年   768篇
  2019年   981篇
  2018年   921篇
  2017年   617篇
  2016年   920篇
  2015年   1344篇
  2014年   1524篇
  2013年   1587篇
  2012年   1940篇
  2011年   1708篇
  2010年   997篇
  2009年   924篇
  2008年   1091篇
  2007年   907篇
  2006年   830篇
  2005年   651篇
  2004年   510篇
  2003年   448篇
  2002年   372篇
  2001年   323篇
  2000年   321篇
  1999年   324篇
  1998年   208篇
  1997年   242篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   129篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   48篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
The role of vacancy defects is demonstrated to be positive in various energy‐related processes. However, introducing vacancy defects into single‐crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this study deliberately introduces oxygen defects into single‐crystalline ultrathin Co3O4 nanosheets with O‐terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As‐prepared defect‐rich Co3O4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec?1 for the oxygen evolution reaction (OER), which is among the best Co‐based OER catalysts to date and even more active than the state‐of‐the‐art IrO2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second‐layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. This mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect‐based electrocatalysts.  相似文献   
852.
Lithium‐ion batteries (LIBs) are integral parts of modern technology, but can raise safety concerns because of their flammable organic electrolytes with low flash points. Aqueous electrolytes can be used in LIBs to overcome the safety issues that come with organic electrolytes while avoiding poor kinetics associated with solid state electrolytes. Despite advances in aqueous electrolytes, current collectors for aqueous battery systems have been neglected. Current collectors used in today's aqueous battery systems are usually metal‐based materials, which are heavy, expensive, bulky, and prone to corrosion after prolonged use. Here, a carbon nanotube (CNT)–cellulose nanofiber (CNF) all‐fiber composite is developed that takes advantage of the high conductivity of CNT while achieving high mechanical strength through the interaction between CNT and CNF. By optimizing the CNT/CNF weight ratio, this all‐fiber current collector can be made very thin while maintaining high conductivity (≈700 S cm?1) and strength (>60 MPa), making it an ideal replacement for heavy metal current collectors in aqueous battery systems.  相似文献   
853.
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.  相似文献   
854.
The p53 tumor suppressor plays a key role in maintaining genomic stability and protection against malignant transformation. MDM2 and MDMX are both p53-binding proteins that regulate p53 stability and activity. Recent development of the MDM2 inhibitor Nutlin 3 has greatly facilitated functional analysis of MDM2-p53 binding. We found that although MDMX is homologous to MDM2 and binds to the same region on p53 N terminus, Nutlin does not disrupt p53-MDMX interaction. The ability of Nutlin to activate p53 is compromised in tumor cells overexpressing MDMX. Combination of Nutlin with MDMX siRNA resulted in synergistic activation of p53 and growth arrest. These results suggest that MDMX is also a valid target for p53 activation in tumor cells. Development of novel compounds that are MDMX-specific or optimized for dual-inhibition of MDM2 and MDMX are necessary to achieve full activation of p53 in tumor cells.  相似文献   
855.
The treatment of the simulated lead-contaminated solid waste by composting with white-rot fungus was studied at laboratory scale. The composting system without the inocula of white-rot fungus was prepared as control, and the composting of the uncontaminated solid waste with the inocula of white-rot fungus was carried out as the other control. The results indicated that the solid waste inoculated with white-rot fungus could be successfully processed. The final compost was mature with 70.5% of lead (Pb) in residual fraction and none in exchangeable fraction. Germination index reached 120%. All the results indicated that the bioavailability of Pb in compost was reduced and the potential harm of Pb in compost was alleviated by composting with the inocula of white-rot fungus.  相似文献   
856.
Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain “excitatory” stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.  相似文献   
857.
858.
The developmental changes of intestinal digestive potential and caecal microbial activity were described in suckling and weaned rabbits according to two feeding programmes. Two groups of thirteen litters were fed from 18 to 42 days old a "High" or a "Medium" NDF:starch ratio diet (resp. 2.7 vs 2.0, groups HL and ML) with similar protein and lipid levels, and from 42 to 70 days old the two groups were fed a "Low" NDF:starch ratio diet (1.7). From 25 to 32 days (weaning), the milk and solid feed intake were 22% and 41% higher in ML group (P<0.05), and the mortality by diarrhoea was 4 units lower (P<0.01). The whole tract digestive efficiency increased by 10% before weaning, and remained steady (organic matter) or decreased (lipids, protein) after weaning. Energy digestibility was 0.623 and 0.686 for High and Medium diets respectively. From 25 to 42 days, total enzymatic activity in intestinal content increased for chymotrypsin (5-fold, P<0.001), lipase (10-fold, P<0.001), amylase (17-fold, P<0.01) and maltase (11-fold, P<0.001), while trypsin doubled after weaning. The feeding programme only affected the amylase and maltase activities, that were higher in HL group (P<0.05). The volatile fatty acids concentration in the caecum was not significantly different among the groups, but it increased by 44% 10 days after weaning. The bacterial fibrolytic enzymes, increased by 30% after weaning and were similar among the two groups. The study revealed that the intestinal digestive maturation and the caecal microbial activity of the rabbit evolved markedly between 3 and 5 weeks of age, and was weakly affected when the NDF:starch ratio decreased from 2.7 to 2.0.  相似文献   
859.
This study investigates the therapeutic effect and the underlying mechanisms of ergothioneine (EGT) on the testicular damage caused by varicocele (VC) in vivo, in vitro, and in silico. This preclinical study combines a series of biological experiments and network pharmacology analyses. A total of 18 Sprague Dawley (SD) male rats were randomly and averagely divided into three groups: the sham-operated, VC model, and VC model with EGT treatment (VC + EGT) groups. The left renal vein of the VC model and the VC + EGT groups were half-ligated for 4 weeks. Meanwhile, the VC + EGT group was intragastrically administrated with EGT (10 mg/kg). GC1 and GC2 cells were exposed to H2O2 with or without EGT treatment to re-verify the conclusion. The structure disorder of seminiferous tubules ameliorated the apoptosis decrease in the VC rats receiving EGT. EGT can also increase the sperm quality of the VC model rats (p < 0.05). The exposure to H2O2 decreased proliferation and increased apoptosis of GC1 and GC2 cells, which was revisable by adding EGT to the plates (p < 0.05). The network pharmacology and molecular docking were conducted to explore the potential targets of EGT in VC, and HSP90AA1 was identified as the pivotal gene, which was validated by western blot, immunohistochemistry, and RT-qPCR both in vivo and in vitro (p < 0.05). Overall, EGT attenuates the testicular injury in the VC model both in vivo and in vitro by potentially potentiating the expression of HSP90AA1.  相似文献   
860.
Development of the fluorescent pH detection method is promising due to the sensitivity, easy operation, and low‐cost, etc. However, traditional organic fluorophores have still some disadvantages such as the tedious preparation and purification as well as low photostability and water solubility, which limits the rapid detection application. Semiconductor quantum dots (QDs) have recently risen to prominence as an alternative for organic fluorophores in fluorescence analysis by virtue of their convenient synthesis and superior optical properties. In this study, we report on sodium 4‐mercaptophenolate functionalized CdSe/ZnS QDs (denoted as ?OPhS‐QDs), which can serve as a selective “on–off” fluorescence probe for aqueous media pH. ?OPhS‐QDs exhibit strong fluorescence in near neutral medium. As a Lewis organic base, ?OPhS‐ moieties on QDs surface easily binds to proton under acidic conditions to yield 4‐mercaptophenol capped QDs (i.e. HOPhS‐QDs), which acts as an efficient hole trapper. As a result, the QDs photoluminescence (PL) is switched off. Under optimal conditions, the present probe exhibits a good linear relationship between fluorescence response and pH values in the pH range 3.0–5.2. Furthermore, the present probe exhibits a high selectivity for proton over other common cations and has been successfully used for pH detection in real water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号