首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   57篇
  国内免费   102篇
  2024年   2篇
  2023年   21篇
  2022年   27篇
  2021年   62篇
  2020年   37篇
  2019年   36篇
  2018年   30篇
  2017年   31篇
  2016年   44篇
  2015年   68篇
  2014年   73篇
  2013年   72篇
  2012年   91篇
  2011年   77篇
  2010年   54篇
  2009年   33篇
  2008年   41篇
  2007年   28篇
  2006年   44篇
  2005年   19篇
  2004年   10篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   8篇
  1998年   8篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
921.
922.
Avocados are considered very healthy due to the high content mono‐unsaturated lipid, essential vitamins and minerals, minimal sugar and no cholesterol and are therefore sometimes referred to as “the perfect fruits”. Avocados, mainly grown in Latin‐America, are harvested unripe and sent overseas. However, the ripening process is very difficult to assess visually and tactilely. A tool for precise noninvasive judgment of the status would be valuable as the fruit is too expensive to be cut open unripe or overdue. A white‐light source and a light‐emitting diode unit with four excitation wavelengths (365, 385, 395, and 405 nm) were used for reflectance and fluorescence spectroscopy in a fiber‐coupled set‐up for noninvasive monitoring. Twelve non‐ripe avocados, with approximately the same size and appearance, were studied and divided into three groups and kept at three different storage conditions; at room temperature, in a refrigerator and a combination of the two. We showed that fluorescence was useful for following the ripening process. A method, which compensates for the spatial variations in spectral properties around a fruit, is described. Remote fluorescence monitoring, intended for orchard use, was also demonstrated. A low‐cost device based on fluorescence for avocado ripeness assessment is proposed.  相似文献   
923.
Imatinib, the first generation of tyrosine kinase inhibitor, is used to treat and improve the prognosis of chronic myelogenous leukemia (CML). Clinical data suggest that imatinib could cross the blood-testis barrier and reduces the fertility of patients with CML-chronic phase. However, its exact molecular mechanism has not been fully elucidated. In this study, adult male Kunming mice were treated with different doses of imatinib for 8 weeks. The fertility was evaluated, and the sex hormone levels in the blood were detected by enzyme-linked immunosorbent assay. Histological changes were detected by hematoxylin and eosin staining. The concentration of imatinib in semen and blood was detected by liquid chromatography-mass spectrometry. The ultrastructure of blood-testis barrier and apoptotic bodies were observed by transmission electron microscope. The expression of blood-testis barrier function-regulating protein, Mfsd2a, and apoptosis-associated proteins in testis tissue was detected by immunohistochemistry and Western blot. The results indicated that the fertility of male mice was significantly decreased in a dose-dependent manner after imatinib treatment. Certain hormones in the serum were increased in imatinib treatment groups. Sperm morphology and testicular tissue showed various changes after imatinib treatment. The blood-testis barrier was destroyed and the concentration of imatinib in semen was similar to that in blood after imatinib treatment. Apoptosis was significantly increased in testis tissue after imatinib treatment. Collectively, these results suggest that imatinib can alter blood-testis barrier function, induce apoptosis of spermatogonia, and adversely affect fertility by reducing the number of spermatozoa, decreasing sperm motility and increasing the deformity rate.  相似文献   
924.
925.
926.
The locus at 17q12 erb-b2 receptor tyrosine kinase 2 (ERBB2) has been heavily amplificated and overexpressed in gastric cancer (GC), but it remains to be elucidated about the clinical significance of the co-amplification and co-overexpression of PGAP3 gene located around ERBB2 in GC. The profile of PGAP3 and ERBB2 in four GC cell lines and tissue microarrays containing 418 primary GC tissues was assessed to investigate the co-overexpression and clinical significance of the co-amplified genes, and to evaluate the impact of the co-amplified genes on the malignancy of GC. Co-amplification of PGAP3 and ERBB2 accompanied with co-overexpression was observed in a haploid chromosome 17 of NCI-N87 cells with double minutes (DMs). PGAP3 and ERBB2 were overexpressed and positively correlated in 418 GC patients. Co-overexpression of the PGAP3 and ERBB2 was correlated with T stage, TNM stage, tumour size, intestinal histological type and poor survival proportion in 141 GC patients. In vitro, knockdown of the endogenous PGAP3 or ERBB2 decreased cell proliferation and invasion, increased G1 phase accumulation and induced apoptosis in NCI-N87 cells. Furthermore, combined silencing of PGAP3 and ERBB2 showed an additive effect on resisting proliferation of NCI-N87 cells compared with targeting ERBB2 or PGAP3 alone. Taken together, the co-overexpression of PGAP3 and ERBB2 may be crucial due to its significant correlation with clinicopathological factors of GC. Haploid gain of PGAP3 co-amplified with ERBB2 is sufficient to facilitate the malignancy and progression of GC cells in a synergistic way.  相似文献   
927.
Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be achieved. Here we developed and applied a dual-fluorescence-based Protein Turnover Assay (ProTA) to quantitatively profile global changes in human protein degradome upon BTZ-induced proteasomal inhibition. ProTA and subsequent network analyses delineate potential molecular basis for BTZ action and tumor drug resistance in BTZ chemotherapy. Finally, combined use of BTZ with drugs targeting the ProTA-identified key genes or pathways in BTZ action reduced BTZ resistance in multiple myeloma cells. Remarkably, BTZ stabilizes proteasome subunit PSMC1 and proteasome assembly factor PSMD10, suggesting a previously under-appreciated mechanism for regulating proteasome homeostasis. Therefore, ProTA is a novel tool for profiling human protein degradome to elucidate potential mechanisms of drug action and resistance, which might facilitate therapeutic development targeting proteostasis to treat human disorders.  相似文献   
928.
Gao  Peike  Li  Guoqiang  Le  Jianjun  Liu  Xiaobo  Liu  Fang  Ma  Ting 《Applied microbiology and biotechnology》2018,102(4):2007-2017
Applied Microbiology and Biotechnology - Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial...  相似文献   
929.
930.
ABSTRACT

The aim of present investigation was to elucidate the unrevealed beneficial role of diosgenin against an experimental model of TNBS (2,4,6-trinitrobenzenesufonic acid)-induced ulcerative colitis (UC). Colitis was induced in Sprague-Dawley rats by intrarectal administration of TNBS (in 50% ethanol). Then animals were treated with diosgenin (50, 100, and 200 mg/kg) for 14 days. Various biochemical, behavioral, molecular, and histological analysis was performed. Diosgenin significantly decreased (p < 0.05) TNBS-induced elevated colonic oxido-nitrosative damage, myeloperoxidase, hydroxyproline, mRNA expressions of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and inflammatory markers (iNOs and COX-2) induced by TNBS. Western blot analysis relevated that TNBS-induced up-regulated protein expressions of NF-κB, IκBα, Bax, and Caspase-1 were markedly decreased (p < 0.05) by diosgenin treatment. It also markedly ameliorated the histological insults induced in the colon by TNBS. In conclusion, diosgenin exerts its colon-protective efficacy probably through the inhibition of NF-κB/IkB-α and Bax/Caspase-1 signaling pathways to experimental TNBS-induced ulcerative colitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号