首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1763篇
  免费   136篇
  国内免费   82篇
  2023年   11篇
  2022年   53篇
  2021年   73篇
  2020年   42篇
  2019年   78篇
  2018年   77篇
  2017年   61篇
  2016年   64篇
  2015年   82篇
  2014年   102篇
  2013年   103篇
  2012年   157篇
  2011年   125篇
  2010年   96篇
  2009年   68篇
  2008年   77篇
  2007年   70篇
  2006年   75篇
  2005年   55篇
  2004年   44篇
  2003年   52篇
  2002年   51篇
  2001年   38篇
  2000年   37篇
  1999年   36篇
  1998年   14篇
  1997年   23篇
  1996年   14篇
  1995年   18篇
  1994年   14篇
  1993年   14篇
  1992年   19篇
  1991年   28篇
  1990年   12篇
  1989年   13篇
  1988年   5篇
  1987年   14篇
  1986年   6篇
  1985年   6篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   4篇
  1967年   3篇
排序方式: 共有1981条查询结果,搜索用时 109 毫秒
151.
152.
153.
A sequential optimization strategy, based on statistical experimental designs, was used to enhance the production of riboflavin by recombinant Bacillus subtilis RH44. In the first instance, the medium components were optimized in shake flask cultures. After preliminary experiments of nitrogen source selection, the two-level Plackett–Burman (PB) design was implemented to screen medium components that significantly influence riboflavin production. Among the 15 variables tested, glucose, NaNO3, K2HPO4, ZnSO4, and MnCl2 were identified as the most significant factors (confidence levels above 95%) for riboflavin production. The optimal values of these five variables were determined by response surface methodology (RSM) based on the central composite design (CCD). The validity of the model developed was verified, and the optimum medium led to a maximum riboflavin concentration of 6.65 g/l, which was 44.3 and 76.4% higher than the improved medium and the basal medium, respectively. A glucose-limited fed-batch culture profile in a 5-l fermentor was consequently designed according to the above optimum medium in shake flasks. A final riboflavin concentration of 16.36 g/l was obtained in 48 h, which further verified the practicability of this optimum strategy.  相似文献   
154.
Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and the epimerization of DHNP to 7,8-dihydromonopterin (DHMP). Although crystal structures of the enzyme from several microorganisms have been reported, no structural information is available about the critical interactions between DHNA and the trihydroxypropyl moiety of the substrate, which undergoes bond cleavage and formation. Here, we present the structures of Staphylococcus aureus DHNA (SaDHNA) in complex with neopterin (NP, an analog of DHNP) and with monapterin (MP, an analog of DHMP), filling the gap in the structural analysis of the enzyme. In combination with previously reported SaDHNA structures in its ligand-free form (PDB entry 1DHN) and in complex with HP (PDB entry 2DHN), four snapshots for the catalytic center assembly along the reaction pathway can be derived, advancing our knowledge about the molecular mechanism of SaDHNA-catalyzed reactions. An additional step appears to be necessary for the epimerization of DHMP to DHNP. Three active site residues (E22, K100, and Y54) function coordinately during catalysis: together, they organize the catalytic center assembly, and individually, each plays a central role at different stages of the catalytic cycle.  相似文献   
155.
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.  相似文献   
156.
157.
Direct electron transfer reactions of microperoxidase were achieved with the help of semiconductive zinc oxide nanoparticles on a pyrolytic graphite electrode. The enzyme could also exhibit fine electrocatalytic activity towards the reduction of hydrogen peroxide. Thereby, a hydrogen peroxide biosensor was constructed based on the electrocatalysis of microperoxidase. Further studies revealed that after irradiating the microperoxidase/zinc oxide nanoparticles co-modified electrode with UV light for 4h, the catalytic ability of microperoxidase could be greatly promoted, which could be beneficial to developing more sensitive hydrogen peroxide biosensors. As comparison, it was found that the catalytic activity of the enzyme would be depressed if microperoxidase/agarose co-modified electrode was irradiated. We supposed it was the photovoltaic effect of the zinc oxide nanoparticles that improved the catalytic ability of microperoxidase.  相似文献   
158.
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a "mixing matrix" approach combined with a graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that, in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of RNAs and related problems.  相似文献   
159.
SUMMARY: Our RNA-As-Graph-Pools (RagPools) web server offers a theoretical companion tool for RNA in vitro selection and related problems. Specifically, it suggests how to construct RNA sequence/structure pools with user-specified properties and assists in analyzing resulting distributions. This utility follows our recently developed approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a 'mixing matrix' approach combined with a graph theory analysis of RNA secondary-structure space; the mixing matrix specifies nucleotide transition rates, and graph theory links sequences to simple graphical objects representing RNA motifs. The companion RagPools web server ('Designer' component) provides optimized starting sequences, mixing matrices and associated weights in response to a user-specified target pool structure distribution. In addition, RagPools ('Analyzer' component) analyzes the motif distribution of pools generated from user-specified starting sequences and mixing matrices. Thus, RagPools serves as a guide to researchers who aim to synthesize RNA pools with desired properties and/or experiment in silico with various designs by our approach. AVAILABILITY: The web server is accessible on the web at http://rubin2.biomath.nyu.edu  相似文献   
160.
Macrophage infectivity potentiators (Mips) are FKBP domain-containing proteins reported as virulence factors in several human pathogens, such as members of genera Legionella, Salmonella and Chlamydia. The putative peptidylprolyl cis-trans isomerase (PPIase) encoded by XC2699 of the plant bacterial pathogen Xanthomonas campestris pv. campestris 8004 exhibits a 49% similarity at the amino-acid level to the Mip protein of Legionella pneumophila. This mip-like gene, XC2699, was overexpressed in Escherichia coli and the purified (His)6-tagged Mip-like protein encoded by XC2699 exhibited a PPIase activity specifically inhibited by FK-506. A mutation in the mip-like gene XC2699 led to significant reductions in virulence and replication capacity in the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.). Furthermore, the production of exopolysaccharide and the activity of extracellular proteases, virulence factors of X. campestris pv. campestris, were significantly decreased in the mip-like mutant. These results reveal that the mip-like gene is involved in the pathogenesis of X. campestris pv. campestris through an effect on the production of these virulence factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号