全文获取类型
收费全文 | 15782篇 |
免费 | 1385篇 |
国内免费 | 1342篇 |
专业分类
18509篇 |
出版年
2024年 | 45篇 |
2023年 | 232篇 |
2022年 | 476篇 |
2021年 | 763篇 |
2020年 | 632篇 |
2019年 | 715篇 |
2018年 | 705篇 |
2017年 | 511篇 |
2016年 | 689篇 |
2015年 | 1031篇 |
2014年 | 1240篇 |
2013年 | 1267篇 |
2012年 | 1461篇 |
2011年 | 1310篇 |
2010年 | 890篇 |
2009年 | 730篇 |
2008年 | 782篇 |
2007年 | 702篇 |
2006年 | 687篇 |
2005年 | 557篇 |
2004年 | 484篇 |
2003年 | 514篇 |
2002年 | 396篇 |
2001年 | 243篇 |
2000年 | 211篇 |
1999年 | 204篇 |
1998年 | 138篇 |
1997年 | 112篇 |
1996年 | 115篇 |
1995年 | 109篇 |
1994年 | 93篇 |
1993年 | 57篇 |
1992年 | 78篇 |
1991年 | 64篇 |
1990年 | 60篇 |
1989年 | 44篇 |
1988年 | 28篇 |
1987年 | 24篇 |
1986年 | 34篇 |
1985年 | 25篇 |
1984年 | 13篇 |
1983年 | 7篇 |
1982年 | 9篇 |
1981年 | 6篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1976年 | 2篇 |
1970年 | 1篇 |
1962年 | 2篇 |
1950年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
71.
Huo Y Guo X Li H Xu H Halim V Zhang W Wang H Fan YY Ong KT Woo SL Chapkin RS Mashek DG Chen Y Dong H Lu F Wei L Wu C 《The Journal of biological chemistry》2012,287(25):21492-21500
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. 相似文献
72.
Min Ki Jee Ji Hoon Kim Yong Man Han Sung Jun Jung Kyung Sun Kang Dong Wook Kim Soo Kyung Kang 《PloS one》2010,5(2)
Background and Methods
In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl)-derivative (DHP-d) to directly induce adipose tissue stromal cells (ATSC) to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1α and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC). Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions.Conclusions/Significance
Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy. 相似文献73.
74.
75.
76.
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS‐metabolizing enzymes. The superoxide anion () is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates biosynthesis in stem cells, and increasing H2O2 levels or scavenging leads to the termination of stem cells. Our results provide a mechanistic framework for ROS‐mediated control of plant stem cell fate and demonstrate that the balance between and H2O2 is key to stem cell maintenance and differentiation. 相似文献
77.
Liu Q He X Liu Y Du B Wang X Zhang W Jia P Dong J Ma J Wang X Li S Zhang H 《Biochemical and biophysical research communications》2008,377(3):775-779
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with p22phox and gp91phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy. 相似文献
78.
Dan‐Ju Luo Qiong Feng Zhi‐Hao Wang Dong‐Sheng Sun Qun Wang Jian‐Zhi Wang Gong‐Ping Liu 《Journal of neurochemistry》2014,130(6):816-825
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down‐regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase‐3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl‐xl and Bcl‐2 protein levels. Over‐expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen‐activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over‐expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA‐induced cell death.
79.
Rong Li Di‐Dong Xie Jun‐hong Dong Hui Li Kang‐shuai Li Jing Su Lai‐Zhong Chen Yun‐Fei Xu Hong‐Mei Wang Zheng Gong Guo‐Ying Cui Xiao Yu Kai Wang Wei Yao Tao Xin Min‐Yong Li Kun‐Hong Xiao Xiao‐fei An Yuqing Huo Zhi‐gang Xu Jin‐Peng Sun Qi Pang 《Journal of neurochemistry》2014,128(2):315-329
Striatal‐enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal‐regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho‐ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho‐ERK by STEP is not known. Therefore, we examined STEP activity toward para‐nitrophenyl phosphate, phospho‐tyrosine‐containing peptides, and the full‐length phospho‐ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N‐terminal regulatory region and key residues in its active site. Specifically, both kinase interaction motif (KIM) and kinase‐specific sequence of STEP were required for ERK interaction. In addition to the N‐terminal kinase‐specific sequence region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho‐ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho‐ERK peptide sequence through its active site, and the contact of STEP F311 with phospho‐ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP‐ERK recognition, which could serve as a potential therapy for neurological disorders.
80.