首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76645篇
  免费   5583篇
  国内免费   5061篇
  87289篇
  2024年   155篇
  2023年   1039篇
  2022年   2403篇
  2021年   4090篇
  2020年   2630篇
  2019年   3249篇
  2018年   3183篇
  2017年   2315篇
  2016年   3285篇
  2015年   4834篇
  2014年   5590篇
  2013年   6031篇
  2012年   7105篇
  2011年   6216篇
  2010年   3768篇
  2009年   3382篇
  2008年   3774篇
  2007年   3392篇
  2006年   2947篇
  2005年   2403篇
  2004年   1977篇
  2003年   1665篇
  2002年   1413篇
  2001年   1239篇
  2000年   1225篇
  1999年   1126篇
  1998年   664篇
  1997年   655篇
  1996年   667篇
  1995年   620篇
  1994年   543篇
  1993年   377篇
  1992年   568篇
  1991年   435篇
  1990年   406篇
  1989年   284篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
To increase our understanding of the impact of land use/cover changes on soil microbial decomposition genes involved in organic carbon decomposition, we analyzed soil samples in four sites with different land cover/use histories in a subalpine region of western Sichuan. One site was in a primitive Abies faxoniana forest, the second and the third sites were spruce plantations established in 1960's and 1980's, respectively, and the fourth site was in a cropland dating back to 1960's. The genomic DNA from the microbial community was isolated and hybridized against a functional gene microarray containing 1,961 probes. There were 39, 62, 41, and 28 gene probes with statistically significant positive signals and the gene diversity index (H') values were 3.59, 4.04, 3.70 and 3.16 in primitive forest, spruce plantations established in 1960s and 1980s and cropland, respectively. The results suggested that the number of functional genes and the gene diversity index were correlated with increasing amounts of soil organic carbon, except in the primitive Abies faxoniana forest site. cluster analysis demonstrated that primitive forest soil was clustered more closely to soil from the spruce plantation established in 1960s.  相似文献   
982.
The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be 899SRKRRSST906 and 949KRKKP953 in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest at cytokinesis, indicating that the NLSs are necessary for Mklp-1 to execute its normal function during cell division. Furthermore, mutation of two serine residues in the first NLS to aspartic acid, which mimics phosphorylation, attenuated its nuclear localization function, suggesting that the function of this NLS might be regulated by phosphorylation.  相似文献   
983.
Late embryogenesis abundant (LEA) group 4 (LEA4) proteins play an important role in the water stress tolerance of plants. Although they have been hypothesized to stabilize macromolecules in stressed cells, the protective functions and mechanisms of LEA4 proteins are still not clear. In this study, the metal binding properties of two related soybean LEA4 proteins, GmPM1 and GmPM9, were tested using immobilized metal ion affinity chromatography (IMAC). The metal ions Fe(3+), Ni(2+), Cu(2+) and Zn(2+) were observed to bind these two proteins, while Ca(2+), Mg(2+) or Mn(2+) did not. Results from isothermal titration calorimetry (ITC) indicated that the binding affinity of GmPM1 for Fe(3+) was stronger than that of GmPM9. Hydroxyl radicals generated by the Fe(3+)/H(2)O(2) system were scavenged by both GmPM1 and GmPM9 in the absence or the presence of high ionic conditions (100 mM NaCl), although the scavenging activity of GmPM1 was significantly greater than that of GmPM9. These results suggest that GmPM1 and GmPM9 are metal-binding proteins which may function in reducing oxidative damage induced by abiotic stress in plants.  相似文献   
984.
Li L  Ni W  Li XR  Hua Y  Fang PL  Kong LM  Pan LL  Li Y  Chen CX  Liu HY 《Steroids》2011,76(10-11):1037-1042
By analyzing the steroidal content of fresh whole plants of Tacca subflabellata (Taccaceae), we isolated one sapogenin and eight glycosides with four kinds of steroidal skeletons including four new glycosides, named taccasubosides A-D (1-4), together with five known compounds. Among them, compound 1 is the first pentacyclic sterol glycoside with 6-6-6-5-6 fused rings. The structures of 1-4 were elucidated on the basis of extensive spectroscopic analysis, including that of 2D NMR data, and the results of acidic hydrolysis. The cytotoxicity of the selected steroidal glycosides (1-4, 8, and 9) was evaluated in vitro against five human cancer cell lines. Compound 9 showed significant inhibitory activity against all five cell lines.  相似文献   
985.
To A  Bai Y  Shen A  Gong H  Umamoto S  Lu S  Liu F 《PloS one》2011,6(4):e17796
Human cytomegalovirus (HCMV) is the largest human herpesvirus and its virion contains many viral encoded proteins found in the capsid, tegument, and envelope. In this study, we carried out a yeast two-hybrid (YTH) analysis to study potential binary interactions among 56 HCMV-encoded virion proteins. We have tested more than 3,500 pairwise combinations for binary interactions in the YTH analysis, and identified 79 potential interactions that involve 37 proteins. Forty five of the 79 interactions were also identified in human cells expressing the viral proteins by co-immunoprecipitation (co-IP) experiments. To our knowledge, 58 of the 79 interactions revealed by YTH analysis, including those 24 that were also identified in co-IP experiments, have not been reported before. Novel potential interactions were found between viral capsid proteins and tegument proteins, between tegument proteins, between tegument proteins and envelope proteins, and between envelope proteins. Furthermore, both the YTH and co-IP experiments have identified 9, 7, and 5 interactions that were involved with UL25, UL24, and UL89, respectively, suggesting that these "hub" proteins may function as the organizing centers for connecting multiple virion proteins in the mature virion and for recruiting other virion proteins during virion maturation and assembly. Our study provides a framework to study potential interactions between HCMV proteins and investigate the roles of protein-protein interactions in HCMV virion formation or maturation process.  相似文献   
986.
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid herbicide and subject to aerobic microbial degradation. Earthworms stimulate both growth and activity of MCPA-degrading bacteria in soil. Thus, active MCPA degraders in soil and drilosphere (i.e. burrow walls, gut content and cast) were assessed by 16S rRNA stable isotope probing in soil columns under experimental conditions designed to minimize laboratory incubation biases. Agriculturally relevant concentrations of [(13) C]MCPA (20 μg g(dw) (-1)) were degraded in soil within 23 and 27 days in the presence and absence of earthworms respectively. Total 16S rRNA analysis revealed 73 operational taxonomic units indicative of active Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia in soil and drilosphere derived material. Seven operational taxonomic units indicative of Alpha-, Beta-, Gammaproteobacteria and Firmicutes consumed MCPA-[(13) C]. Dominant consumers of MCPA-[(13) C] were Alphaproteobacteria (Sphingomonadaceae and Bradyrhizobiaceae) in soil and drilosphere. Beta- (Comamonadaceae) and Gammaproteobacteria (Xanthomonadaceae) were also important MCPA-[(13) C] consumers in burrow walls only, indicating that earthworms favour betaproteobacterial MCPA degraders. In oxic microcosms with bulk soil, burrow walls and cast, 20 and 300-400 μg g(dw) (-1) [(13) C]MCPA were consumed within 24 h and 20 days respectively. Gut contents did not facilitate the degradation of [(13) C]MCPA. Sphingomonadaceae dominated MCPA-[(13) C] consumers in bulk soil and burrow wall microcosms, while Beta- and Gammaproteobacteria (Burkholderiacea, Comamonadaceae, Oxalobacteraceae and Xanthomonadaceae) dominated MCPA-[(13) C] consumers in microcosms of cast, indicating that the latter taxa are prone to respond to MCPA in cast. The collective data indicated that Alphaproteobacteria are major MCPA degraders in soil and drilosphere.  相似文献   
987.
Wang D  Shi J  Tan J  Jin X  Li Q  Kang H  Liu R  Jia B  Huang Y 《Biomacromolecules》2011,12(5):1851-1859
Dextran graft poly (N-methacryloylglycylglycine) copolymer-tyrosine conjugates (dextran-g-PMAGGCONHTyr) were synthesized and characterized. Dynamic light scattering (DLS) results indicated that the graft copolymers are soluble in pH 7.4 PBS and 0.9% saline solutions. The graft copolymers were labeled with (125)I, and the labeling stability in 0.9% saline solution was investigated. Pharmacokinetics studies showed a rapid clearance of (125)I-labeled graft copolymers from the blood pool. Biodistribution images confirmed the preferable liver and spleen accumulation within 1 h after injection and rapid clearance from all the organs over time. The graft copolymer with molecular weight of 9.8 kDa was eliminated from the kidney significantly faster than those with higher molecular weight. The effect of the numbers of -COOH groups on the graft copolymers on the biodistribution was also investigated. It was found that the graft copolymers with the average number of -COOH groups per glucopyranose unit (DS(-COOH)) of 0.57 and 0.18 are mainly distributed in liver and spleen at 1 h after injection, whereas the graft copolymer with DS(-COOH) of 0.07 is mainly accumulated in kidney.  相似文献   
988.
989.
Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition of Id2. In this study, Balb/c and DBA/2N mice were fed with a regular rodent chow or supplemented with a dietary fiber (20% pectin) and Smad3 level in gut epithelium was measured. In vitro, RIE-1 cells were treated with butyrate and TGF-β(1), and cell functions were evaluated. Furthermore, the role of Ids in butyrate- and TGF-β-induced growth inhibition was investigated. We found that pectin feeding increased Smad3 protein levels in the jejunum (1.47 ± 0.26-fold, P = 0.045, in Balb/c mice; 1.49 ± 0.19-fold, P = 0.016, in DBA/2N mice), and phospho-Smad3 levels (1.92 ± 0.27-fold, P = 0.009, in Balb/c mice; 1.83 ± 0.28-fold, P = 0.022, in DBA/2N mice). Butyrate or TGF-β alone inhibited cell growth and induced cell cycle arrest. The combined treatment of butyrate and TGF-β synergistically induced cell cycle arrest and apoptosis in RIE-1 cells and repressed Id2 and Id3 levels. Furthermore, knockdown of Id2 gene expression by use of small interfering RNA caused cell cycle arrest and apoptosis. We conclude that dietary fiber pectin enhanced Smad3 expression and activation in the gut. Butyrate and TGF-β induced cell cycle arrest and apoptosis, which may be mediated by repression of Id2. Our results implicate a novel mechanism of dietary fiber in reducing the risk of colorectal cancer development.  相似文献   
990.
In the past decades, it has become clear that superoxide radical (O2 ·?) can be generated from photosystem II (PSII) during photosynthesis. Depending on the extent of its accumulation, O2 ·? plays an important role in plant physiology and pathology. The photoinhibition/repair cycle is a typical process in PSII which is mainly responsible for the survival of plants under the photoinihibition condition. It is therefore of significant importance to determine O2 ·? production in this cycle, and then explore how O2 ·? is controlled by PSII within a normal physiological level. With this in mind, we herein investigate the variation of the O2 ·? levels in PSII under Mn-depleted and photoactivated conditions mimicking the photoinhibition/repair cycle in vitro. The effect of intrinsic SOD-like component on the O2 ·? levels was also studied. Results show that PSII has the ability to regulate the O2 ·? levels in these two processes by simultaneously modulating the O2 ·? generation activity and intrinsic SOD-like activity. This finding could shed new lights on the photoprotective property of PSII against O2 ·? and other reactive oxygen species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号