首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3892篇
  免费   328篇
  国内免费   594篇
  2024年   16篇
  2023年   58篇
  2022年   150篇
  2021年   254篇
  2020年   176篇
  2019年   220篇
  2018年   186篇
  2017年   173篇
  2016年   191篇
  2015年   257篇
  2014年   295篇
  2013年   350篇
  2012年   373篇
  2011年   325篇
  2010年   209篇
  2009年   228篇
  2008年   226篇
  2007年   185篇
  2006年   184篇
  2005年   126篇
  2004年   80篇
  2003年   77篇
  2002年   53篇
  2001年   43篇
  2000年   39篇
  1999年   50篇
  1998年   31篇
  1997年   27篇
  1996年   29篇
  1995年   36篇
  1994年   29篇
  1993年   23篇
  1992年   23篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   14篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有4814条查询结果,搜索用时 31 毫秒
21.
野生大豆种子蛋白含量差异的生理及结构基础的探讨   总被引:1,自引:0,他引:1  
利用SDS-聚丙烯酰胺凝胶电泳、电子显微镜、蛋白及酰脲含量测定等技术,对高蛋白含量(50.7% )的50359 和低蛋白含量(40.8% )的50305 两个野生大豆在种子发育过程中贮藏蛋白积累的速率、蛋白组分合成的起始时间、蛋白体发育的进程以及幼茎的酰脲含量进行了比较研究。结果表明:野生大豆50359的高蛋白含量是与其种子发育过程中较高的植株酰脲含量、较早较快的贮藏蛋白合成及积累速率,液泡中高效的蛋白贮藏方式以及蛋白体在子叶细胞中占有较大体积相联系的  相似文献   
22.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   
23.
To elucidate how enriched CO2 atmospheres, soil fertility, and light availability interact to influence the long-term growth of tree seedlings, six co-occurring members of temperate forest communities including ash (Fraxinus americana L.), gray birch (Betula populifolia), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), striped maple (Acer pensylvanicum), and red oak (Quercus rubra L.) were raised in a glasshouse for three years in a complete factorial design. After three years of growth, plants growing in elevated CO2 atmospheres were generally larger than those in ambient CO2 atmospheres, however, magnitudes of CO2-induced growth enhancements were contingent on the availability of nitrogen and light, as well as species identity. For all species, magnitudes of CO2-induced growth enhancements after one year of growth were greater than after three years of growth, though species' growth enhancements over the three years declined at different rates. These results suggest that CO2-induced enhancements in forest productivity may not be sustained for long periods of time. Additionally, species' differential growth responses to elevated CO2 may indirectly influence forest productivity via long-term species compositional changes in forests.  相似文献   
24.
Specifically mutated Epstein-Barr virus (EBV) recombinants which truncate latent membrane protein 2A (LMP2A) and LMP2B after 260 of 497 amino acids and after 141 of 378 amino acids, respectively, were constructed. Despite truncation before the last seven transmembrane domains and the carboxy terminus, the mutant recombinants were not altered in initiation of primary B-lymphocyte infection or growth transformation, in expression of nuclear protein 1 or 2 or LMP1, or in induction of lytic EBV replication. Cells transformed by mutant virus recombinants were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, serum requirement, or clonogenic growth in soft agar. Together with similar analyses of a mutation stopping translation of the LMP2A amino-terminal cytoplasmic domain, these results indicate that LMP2 is not required for primary B-lymphocyte infection in vitro.  相似文献   
25.
A two-stage culture strategy was studied for continuous high-level production of a foreign protein in the chemically inducible T7 expression system. The first stage is dedicated to the maintenance of plasmid-bearing cells and the second stage to the target protein synthesis by induction of cells coming from the first stage. On entering the second stage, recombinant cells undergo a gradual induction of the target gene expression. These plasmid-bearing cells experience dynamic changes in intracellular compositions and specific growth rates with their individual residence times. Therefore, the overall cultural characteristics in the production stage are really averages of the contributions from the various cells with different residence times. The behavior of the two-stage culture is described by a model, which accounts for dynamic variations of cell growth and protein synthesis rates with cell residence times. Model simulations were compared with experimental results at a variety of operating conditions such as inducer concentration and dilution rate. This model is useful for understanding the behavior of two-stage continuous cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   
26.
Prostate cancer (PCa) is a challenging issue for men's health worldwide due to its uncontrolled proliferation and high metastatic potential. Increasing evidence has supported plant extracts and natural plant derivatives as promising antitumor therapy with less toxic side effects. Yuanhuacine is an active component isolated from Daphne genkwa and can effectively suppress the tumorigenesis of several cancers. However, its role in PCa remains unclear. In this study, yuanhuacine dose-dependently inhibited the proliferation and induced apoptosis of PCa cells. Moreover, yuanhuacine also restrained the invasion and migration of PCa cells. Mechanically, yuanhuacine decreased the ubiquitination and degradation of p53 protein, and ultimately increased p53 levels, which was regulated by inhibiting the phosphorylation and total protein levels of mouse double minute 2 (MDM2). Moreover, elevation of MDM2 reversed the suppressive efficacy of yuanhuacine in PCa cell viability, invasion, and migration. The network pharmacologic and bioinformatics analysis confirmed that MDM2 might be a common target of D. genkwa and LINC00665. Furthermore, yuanhuacine inhibited LINC00665 expression. Upregulation of LINC00665 reversed yuanhuacine-mediated inhibition in MDM2 protein expression and suppressed p53 levels by enhancing its ubiquitination in yuanhuacine-treated cells. Importantly, the inhibitory effects of yuanhuacine on cell viability and metastatic potential were offset after LINC00665 elevation. Together, the current findings highlight that yuanhuacine may possess tumor-suppressive efficacy by inhibiting LINC00665-mediated MDM2/p53 ubiquitination signaling. Therefore, this study indicates that yuanhuacine may be a promising candidate for the treatment of PCa.  相似文献   
27.
Nodulin-26 (N-26) is a major peribacteroid membrane protein in soybean root nodules. The gene encoding this protein is a member of an ancient gene family conserved from bacteria to humans. N-26 is specifically expressed in root nodules, while its homolog, soybean putative channel protein, is expressed in vegetative parts of the plant, with its highest level in the root elongation zone. Analysis of the soybean N-26 gene showed that its four introns mark the boundaries between transmembrane domains and the surface peptides, suggesting that individual transmembrane domains encoded by a single exon act as functional units. The number and arrangement of introns between N-26 and its homologs differ, however. Promoter analysis of N-26 was conducted in both homologous and heterologous transgenic plants. The cis-acting elements of the N-26 gene are different from those of the other nodulin genes, and no nodule-specific cis-acting element was found in this gene. In transgenic nodules, the expression of N-26 was detected only in the infected cells; no activity was found in nodule parenchyma and uninfected cells of the symbiotic zone. The N-26 gene is expressed in root meristem of transgenic Lotus corniculatus and tobacco but not in untransformed and transgenic soybean roots, suggesting the possibility that this nodulin gene is controlled by a trans-negative regulatory mechanism in homologous plants. This study demonstrates how a preexisting gene in the root may have been recruited for symbiotic function and brought under nodule-specific developmental control.  相似文献   
28.
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.  相似文献   
29.
细胞核移植技术已被证明是研究发育中核质相互关系的非常重要的手段之一,电融合技术也是近十年发展起来的新型细胞融合技术。本实验运用这两项技术,进行了鼠、兔目间核质杂交实验,小鼠8-细胞核在激活的兔去核卵母细胞中,发生了染色体超前凝聚及核膨胀,融合卵移植到小鼠输卵管4.5天后,冲洗出,有5.4%的重构卵发育到囊胚期,通过染色体检查,囊胚细胞中均为小鼠染色体,其中一个囊胚为正常小鼠核型(2 n=40,XX)。通过本实验,我们认为:鼠兔远缘核质杂交胚胎的早期发育是可能的。  相似文献   
30.
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号