首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130028篇
  免费   3264篇
  国内免费   3700篇
  136992篇
  2024年   99篇
  2023年   516篇
  2022年   1183篇
  2021年   2168篇
  2020年   1366篇
  2019年   1724篇
  2018年   13156篇
  2017年   11523篇
  2016年   8851篇
  2015年   2984篇
  2014年   3121篇
  2013年   3362篇
  2012年   7675篇
  2011年   15664篇
  2010年   13716篇
  2009年   9680篇
  2008年   11593篇
  2007年   12924篇
  2006年   1835篇
  2005年   1779篇
  2004年   2001篇
  2003年   1918篇
  2002年   1530篇
  2001年   918篇
  2000年   748篇
  1999年   651篇
  1998年   361篇
  1997年   386篇
  1996年   353篇
  1995年   317篇
  1994年   338篇
  1993年   292篇
  1992年   331篇
  1991年   279篇
  1990年   220篇
  1989年   196篇
  1988年   144篇
  1987年   114篇
  1986年   92篇
  1985年   86篇
  1984年   66篇
  1983年   70篇
  1982年   36篇
  1979年   11篇
  1972年   246篇
  1971年   274篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Melanoma is an aggressive skin malignancy with a high mortality rate; however, successful treatment remains a clinical challenge. Ivermectin, a broad-spectrum antiparasitic drug, has recently been characterized as a potential anticancer agent due to its observed antitumor effects. However, the molecular mechanisms of ivermectin remain poorly understood. In the current study, we tested the involvement of autophagy in the ivermectin mechanism of action in human melanoma cells. We exposed SK-MEL-28 cells to different concentrations of ivermectin (2.5, 5, and 10 μM) for 24 hours. Here, ivermectin-induced apoptosis, as evidenced by the upregulation of cleaved poly (ADP-ribose) polymerase, BAX expression, and caspase-3 activity and downregulation of BCL-2 expression. In line with the apoptosis response, ivermectin triggered autophagy. Pharmacological or genetic inhibition of autophagy further sensitized SK-MEL-28 cells to ivermectin-induced apoptosis. Mechanistically, ivermectin-induced TFE3(Ser321) dephosphorylation, activated TFE3 nuclear translocation and increased TFE3 reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes, and subsequently, initiated autophagy in SK-MEL-28 cells. Moreover, N-acetyl-cysteine, an reactive oxygen species (ROS) scavenger, abrogated the effects of ivermectin on TFE3-dependent autophagy. Taken together, we demonstrated that ivermectin increases TFE3-dependent autophagy through ROS signaling pathways in human melanoma cells and that inhibiting autophagy enhances ivermectin-induced apoptosis in human melanoma cells.  相似文献   
952.
953.
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3′ ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson–Crick base pair at the end. Mismatched duplexes with a 3′ dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5′ exonuclease activity of the enzyme.  相似文献   
954.
The acrosome reaction is a complex, calcium-dependent reaction that results in an exocytotic event required for successful fertilization of the egg. It has long been thought that the acrosome reaction occurs upon sperm binding to the zona pellucida, a viscoelastic layer surrounding the oocyte. Recent studies have suggested that the reaction may even occur before the sperm encounters the zona, perhaps mediated by progesterone or some other agonist. It has been particularly difficult to understand differences between progesterone-induced and zona-induced reactions experimentally and whether one substance is the more biologically relevant trigger. Until this present work, there has been little effort to mathematically model the acrosome reaction in sperm as a whole. Instead, attention has been paid to modeling portions of the pathways involved in other cell types. Here we present a base model for the acrosome reaction which characterizes the known biochemical reactions and behaviors of the system. Our model allows us to analyze several pathways that may act as a stabilizing mechanism for avoiding sustained oscillatory calcium responses often observed in other cell types. Such an oscillatory regime might otherwise prevent acrosomal exocytosis and therefore inhibit fertilization. Results indicate that the acrosome reaction may rely upon multiple redundant mechanisms to avoid entering an oscillatory state and instead maintain a high resting level of calcium, known to be required for successful acrosomal exocytosis and, ultimately, fertilization of the oocyte.  相似文献   
955.
956.
Protein glycosylation, the most universal and diverse post-translational modification, can affect protein secretion, stability, and immunogenicity. The structures of glycans attached to proteins are quite diverse among different organisms and even within yeast species. In yeast, protein glycosylation plays key roles in the quality control of secretory proteins, and particularly in maintaining cell wall integrity. Moreover, in pathogenic yeasts, glycans assembled on cell-surface glycoproteins can mediate their interactions with host cells. Thus, a comprehensive understanding of protein glycosylation in various yeast species and defining glycan structure characteristics can provide useful information for their biotechnological and clinical implications. Yeast-specific glycans are a target for glyco-engineering; implementing human-type glycosylation pathways in yeast can aid the production of recombinant glycoproteins with therapeutic potential. The virulenceassociated glycans of pathogenic yeasts could be exploited as novel targets for antifungal agents. Nowadays, several glycomics techniques facilitate the generation of species-and strain-specific glycome profiles and the delineation of modified glycan structures in mutant and engineered yeast cells. Here, we present the protocols employed in our laboratory to investigate the N-and O-glycan chains released from purified glycoproteins or cell wall mannoproteins in several yeast species.  相似文献   
957.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   
958.
本文利用发根农杆菌感染黄瓜植体得到的转化根,在不同激素配比的分分培养基上培养,进行再生植株的诱导试验,结果表明,NAA和BA的合适配比,有利于黄瓜植株的再生,转化根及其再生植株检测到冠瘿碱的存在,说明农杆菌Ri质粒的T-DNA已转移到黄瓜基因组中。  相似文献   
959.
蛋白质三维结构叠加面临的主要问题是,参与叠加的目标蛋白质的氨基酸残基存在某些缺失,但是多结构叠加方法却大多数需要完整的氨基酸序列,而目前通用的方法是直接删去缺失的氨基酸序列,导致叠加结果不准确。由于同源蛋白质间结构的相似性,因此,一个蛋白质结构中缺失的某个区域,可能存在于另一个同源蛋白质结构中。基于此,本文提出一种新的、简单、有效的缺失数据下的蛋白质结构叠加方法(ITEMDM)。该方法采用缺失数据的迭代思想计算蛋白质的结构叠加,采用优化的最小二乘算法结合矩阵SVD分解方法,求旋转矩阵和平移向量。用该方法成功叠加了细胞色素C家族的蛋白质和标准Fischer’s 数据库的蛋白质(67对蛋白质),并且与其他方法进行了比较。数值实验表明,本算法有如下优点:①与THESEUS算法相比较,运行时间快,迭代次数少;②与PSSM算法相比较,结果准确,运算时间少。结果表明,该方法可以更好地叠加缺失数据的蛋白质三维结构。  相似文献   
960.
Plants suffer from combined stress of sulfur deficiency and cadmium toxicity in some agricultural lands. However, little is known about the reaction in plants, such as responses in antioxidant enzymes and non-protein thiol compounds, to such combined stress. Therefore, in this study, four treatments, S-sufficiency (TS?Cd), S-deficiency (T?S?Cd), Cd stress (TS+Cd) and combined stress of S-deficiency and Cd stress (T?S+Cd), were set up to investigate (1) the effects of sulfur deficiency or sulfur sufficiency on Cd toxicity to kidney bean cultivar seedlings and the related mechanisms, and (2) the responses of two kidney bean cultivars to combined stress of S-deficiency and Cd-tolerance. The results showed significant increases in hydrogen peroxide (H2O2) and malondialdehyde contents and significant increases in antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and glutathione S-transferase) activities and non-protein thiol compounds (non-protein thiols, reduced glutathione, phytochelatins) synthesis in the plants in TS+Cd and T?S+Cd. On the tissue level, higher proportion of Cd was found to be immobilized/deposited in roots, while on the sub-cell level, higher proportion of Cd was located in cell walls and vacuole fractions with lower in cell organelles. Taken together, the results indicated that Cd detoxification was achieved by the two kidney bean cultivars through antioxidant enzyme activation, non-protein thiol compound synthesis and sub-cellular compartmentalization. In addition, the results indicated that sufficient S supply helped to relieve Cd toxicity, which is of special significance for remediation or utilization of Cd-contaminated soils as S is a plant essential nutrient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号