首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24221篇
  免费   2309篇
  国内免费   2321篇
  28851篇
  2024年   70篇
  2023年   366篇
  2022年   831篇
  2021年   1367篇
  2020年   982篇
  2019年   1179篇
  2018年   1167篇
  2017年   818篇
  2016年   1137篇
  2015年   1558篇
  2014年   1824篇
  2013年   1861篇
  2012年   2156篇
  2011年   1916篇
  2010年   1221篇
  2009年   1095篇
  2008年   1255篇
  2007年   1082篇
  2006年   911篇
  2005年   781篇
  2004年   741篇
  2003年   735篇
  2002年   622篇
  2001年   548篇
  2000年   434篇
  1999年   400篇
  1998年   241篇
  1997年   194篇
  1996年   195篇
  1995年   148篇
  1994年   168篇
  1993年   108篇
  1992年   111篇
  1991年   130篇
  1990年   94篇
  1989年   82篇
  1988年   60篇
  1987年   53篇
  1986年   52篇
  1985年   48篇
  1984年   21篇
  1983年   18篇
  1982年   15篇
  1981年   9篇
  1980年   7篇
  1978年   4篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 7 毫秒
101.
102.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   
103.
104.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   
105.
106.
107.
Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.  相似文献   
108.
The physiological effects of sunflecks on understory plants are poorly understood. Kingdonia uniflora is an endemic and endangered species in China, with a patchy distribution over much of its range. Sunflecks are reportedly the likely dominant factor in determining its patchy distribution. We studied the photosynthesis of K. uniflora in the field to test whether understory sunflecks result in photoinhibition and, thereby, potentially influence its patchy distribution. K. uniflora exhibited the low dark respiration rates, low light compensation points, and low light saturation points characteristic of shade-tolerant plants, allowing maintenance during the long periods of low understory light. Moreover, K. uniflora was able to regulate light energy utilization by non-photochemical quenching in low light. Gas exchange parameters were measured in six treatments (sunfleck-enriched, sunfleck-enriched with added saturation light, sunfleck-enriched with filtered ultraviolet-B (UV-B) radiation , sunfleck-limited, sunfleck-limited with added saturation light, and sunfleck-limited with filtered UV-B). The sunfleck-enriched treatment caused photoinhibition in K. uniflora, in part due to a UV-B-induced decrease in Pn. In addition, the application of simulated sunflecks indicated that K. uniflora leaves do not need continuous light. The photosynthetic responses of K. uniflora to sunflecks indicate that the sunflecks are a limiting factor in the small-scale distribution of K. uniflora.  相似文献   
109.
Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10−4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10−7 M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10−5 M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the development of better, more clinically relevant BMP-2-conjugated systems for bone repair and regeneration.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号