首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22603篇
  免费   2134篇
  国内免费   2058篇
  26795篇
  2024年   61篇
  2023年   312篇
  2022年   766篇
  2021年   1245篇
  2020年   899篇
  2019年   1083篇
  2018年   1094篇
  2017年   789篇
  2016年   1069篇
  2015年   1396篇
  2014年   1672篇
  2013年   1692篇
  2012年   2043篇
  2011年   1810篇
  2010年   1074篇
  2009年   1042篇
  2008年   1139篇
  2007年   1002篇
  2006年   848篇
  2005年   731篇
  2004年   705篇
  2003年   687篇
  2002年   603篇
  2001年   516篇
  2000年   397篇
  1999年   367篇
  1998年   233篇
  1997年   203篇
  1996年   199篇
  1995年   149篇
  1994年   162篇
  1993年   117篇
  1992年   131篇
  1991年   133篇
  1990年   112篇
  1989年   67篇
  1988年   64篇
  1987年   52篇
  1986年   37篇
  1985年   46篇
  1984年   14篇
  1983年   16篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10−4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10−7 M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10−5 M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the development of better, more clinically relevant BMP-2-conjugated systems for bone repair and regeneration.  相似文献   
102.
Multiple evidence shows that metformin serves as a potential agent for Colorectal Cancer (CRC) treatment, while its molecular mechanisms still require detailed investigation. Here, we revealed that metformin specifically suppressed the proliferation of CRC cells by causing G1/S arrest, and INHBA is a potential target for metformin to play an anti-proliferation effect in CRC. We verified the oncogene role of INHBA by knocking down and overexpressing INHBA in CRC cells. Silencing INHBA abrogated the cell growth, while overexpression INHBA promotes the proliferation of CRC cells. As an oncogene, INHBA was aberrant overexpression in CRC tissues and closely related to the poor prognosis of CRC patients. In mechanism, INHBA is an important ligand of TGF-β signaling and metformin blocked the activation of TGF-β signaling by targeting INHBA, and then down-regulated the activity of PI3K/Akt pathway, leading to the reduction of cyclinD1 and cell cycle arrest. Together, these findings indicate that metformin down-regulates the expression of INHBA, then attenuating TGF-β/PI3K/Akt signaling transduction, thus inhibiting the proliferation of CRC. Our study elucidated a novel molecular mechanism for the anti-proliferation effect of metformin, providing a theoretical basis for the application of metformin in CRC therapy.Subject terms: Colorectal cancer, Cell growth, Target identification  相似文献   
103.
104.
Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.Subject terms: Colon cancer, Cancer microenvironment  相似文献   
105.
The application of lithium (Li) metal anodes in rechargeable batteries is primarily restricted by Li dendrite growth on the metal's surface, which leads to shortened cycle life and safety concerns. Herein, well‐spaced nanotubes with ultrauniform surface curvature are introduced as a Li metal anode structure. The ultrauniform nanotubular surface generates uniform local electric fields that evenly attract Li‐ions to the surface, thereby inducing even current density distribution. Moreover, the well‐defined nanotube spacing offers Li diffusion pathways to the electroactive areas as well as the confined spaces to host deposited Li. These structural attributes create a unique electrodeposition manner; i.e., Li metal homogenously deposits on the nanotubular wall, causing each Li nanotube to grow in circumference without obvious sign of dendritic formation. Thus, the full‐cell battery with the spaced Li nanotubes exhibits a high specific capacity of 132 mA h g?1 at 1 C and an excellent coulombic efficiency of ≈99.85% over 400 cycles.  相似文献   
106.
Novel 2H-benzo[b][1,4]oxazin-3(4H)-ones have been synthesized by condensation, reduction, O-alkylation and Smiles rearrangement using 3-bromo-4-hydroxy benzaldehyde, anilines, and chloroacetyl chloride as starting materials. All the synthesized compounds have been characterized by (1)H NMR, (13)C NMR, and HRMS, and tested for the inhibitory ability on platelet aggregation. The results have shown that the ADP (adenosine 5'-diphosphate)-induced platelet aggregation was inhibited by 7a-g with the IC(50) value at 10.14-18.83 μmol/L. Compound 7a exhibited the most potent inhibitory effect (IC(50)=10.14 μmol/L) among all the compounds, but less potent than the control drug ticlopidine (3.18 μmol/L) and aspirin (6.07 μmol/L). The preliminary structure-activity relationship (SAR) was initially investigated in the study.  相似文献   
107.
Alzheimer’s disease (AD), a complex chronic progressive central nervous system degenerative disease and a public health problem of the world, often characters cognitive dysfunction accompaning aggression and depression, and may lead to death. More attentions should be paid on it because there is no modified strategy against AD till now. AD is featured with the loss of cholinergic neurons, the amyloid-beta peptide (Aβ) plaques and the neurofibrillary tangles and several hypotheses were established to explain the pathogenesis of AD. Hydroxycinnamic acids, including caffeic acid (CA) and ferulic acid (FA) are widely distributed in natural plants and fruits. CA and FA exert various pharmacological activities, including anti-inflammatory, antioxidant, neuroprotection, anti-amyloid aggregation and so on. All these pharmacological activities are associated with the treatment of AD. Here we summarized the pharmacological activities of CA and FA, and their hybrids as multi-target-directed ligands (MTDLs) against AD. The future application of CA and FA was also discussed, hoping to provide beneficial information for the development of CA- and FA-based MTDLs against AD.  相似文献   
108.
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.  相似文献   
109.

Necroptosis is a programmed necrosis that is mediated by receptor-interacting protein kinases RIPK1, RIPK3 and the mixed lineage kinase domain-like protein, MLKL. Necroptosis must be strictly regulated to maintain normal tissue homeostasis, and dysregulation of necroptosis leads to the development of various inflammatory, infectious, and degenerative diseases. Ubiquitylation is a widespread post-translational modification that is essential for balancing numerous physiological processes. Over the past decade, considerable progress has been made in the understanding of the role of ubiquitylation in regulating necroptosis. Here, we will discuss the regulatory functions of ubiquitylation in necroptosis signaling pathway. An enhanced understanding of the ubiquitylation enzymes and regulatory proteins in necroptotic signaling pathway will be exploited for the development of new therapeutic strategies for necroptosis-related diseases.

  相似文献   
110.
Spinal cord injury (SCI) initiates a cascade of events and these responses to injury are likely to be mediated and reflected by changes in mRNA concentrations. As a step towards understanding the complex mechanisms underlying repair and regeneration after SCI, the gene expression pattern was examined 4.5 days after complete transection at T8-9 level of rat spinal cord. Improved subtractive hybridization was used to establish a subtracted cDNA library using cDNAs from normal rat spinal cord as driver and cDNAs from injured spinal cord as tester. By expressed sequence tag (EST) sequencing, we obtained 73 EST fragments from this library, representing 40 differentially expressed genes. Among them, 32 were known genes and 8 were novel genes. Functions of all annotated genes were scattered in almost every important field of cell life such as DNA repair, detoxification, mRNA quality control, cell cycle control, and signaling, which reflected the complexity of SCI and regeneration. Then we verified subtraction results with semiquantitative RT-PCR for eight genes. These analyses confirmed, to a large extent, that the subtraction results accurately reflected the molecular changes occurring at 4.5 days post-SCI. The current study identified a number of genes that may shed new light on SCI-related inflammation, neuroprotection, neurite-outgrowth, synaptogenesis, and astrogliosis. In conclusion, the identification of molecular changes using improved subtractive hybridization may lead to a better understanding of molecular mechanisms responsible for repair and regeneration after SCI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号