首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74367篇
  免费   18651篇
  国内免费   4201篇
  97219篇
  2024年   130篇
  2023年   650篇
  2022年   1580篇
  2021年   2823篇
  2020年   3688篇
  2019年   5547篇
  2018年   5578篇
  2017年   5345篇
  2016年   5993篇
  2015年   6899篇
  2014年   7100篇
  2013年   7716篇
  2012年   6216篇
  2011年   5463篇
  2010年   5439篇
  2009年   3976篇
  2008年   3354篇
  2007年   2617篇
  2006年   2264篇
  2005年   2073篇
  2004年   1789篇
  2003年   1679篇
  2002年   1460篇
  2001年   1241篇
  2000年   985篇
  1999年   881篇
  1998年   509篇
  1997年   445篇
  1996年   442篇
  1995年   369篇
  1994年   361篇
  1993年   262篇
  1992年   341篇
  1991年   297篇
  1990年   230篇
  1989年   183篇
  1988年   155篇
  1987年   173篇
  1986年   132篇
  1985年   128篇
  1984年   88篇
  1983年   68篇
  1982年   67篇
  1981年   48篇
  1980年   37篇
  1979年   44篇
  1977年   32篇
  1975年   29篇
  1974年   34篇
  1972年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, KD = 1.32 μM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3β-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.  相似文献   
942.
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.  相似文献   
943.
The neurotrophin brain-derived neurotrophic factor (BDNF), which acts as a transducer, is responsible for improving cerebral stroke, neuropathic pain, and depression. Exercise can alter extracellular nucleotide levels and purinergic receptors in central nervous system (CNS) structures. This inevitably activates or inhibits the expression of BDNF via purinergic receptors, particularly the P2X receptor (P2XR), to alleviate pathological progression. In addition, the significant involvement of sensitive P2X4R in mediating increased BDNF and p38-MAPK for intracerebral hemorrhage and pain hypersensitivity has been reported. Moreover, archetypal P2X7R blockade induces mouse antidepressant-like behavior and analgesia by BDNF release. This review summarizes BDNF-mediated neural effects via purinergic receptors, speculates that P2X4R and P2X7R could be priming molecules in exercise-mediated changes in BDNF, and provides strategies for the protective mechanism of exercise in neurogenic disease.  相似文献   
944.
Flotillin‐1(FLOT1) has long been recognized as a tumour‐promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM.  相似文献   
945.
Rice eating and cooking quality(ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content(GPC) is negatively related to ECQ,making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein gluteli...  相似文献   
946.
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1‐AIPP1‐EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin‐containing genes. However, the genome‐wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome‐wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin‐containing genes, including not only intronic heterochromatin‐containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin‐overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin‐containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.  相似文献   
947.
Li HX  Qu CQ  Luo X 《生理科学进展》2007,38(2):129-132
增加具有完整功能的种子细胞数目是细胞移植的首要环节。近来研究发现,成体动物脂肪组织中含有大量的具有多向分化潜能的间充质干细胞,在特定条件下可分化为多种组织细胞,如脂肪细胞、成骨细胞、软骨细胞、肌细胞及神经星状细胞等,且具有极强的自我复制能力,有望成为组织工程理想的种子细胞。本文综述了脂肪组织源性干细胞(ADSCs)的发现、生物学特性、多向分化潜能、应用前景及存在的问题。  相似文献   
948.
Depression is a serious public-health issue. Recent reports have suggested higher susceptibility to viral infections in depressive patients. However, how depression affects antiviral innate immune signaling remains unknown. Here, we revealed a reduction in expression of Abelson helper integration site 1 (AHI1) in the peripheral blood mononuclear cells (PBMCs) and macrophages from the patients with major depressive disorder (MDD), which leads to attenuated antiviral immune response. We found that depression-related arginine vasopressin (AVP) induces reduction of AHI1 in macrophages. Further studies demonstrated that AHI1 is a critical stabilizer of basal type-I-interferon (IFN-I) signaling. Mechanistically, AHI1 recruits OTUD1 to deubiquitinate and stabilize Tyk2, while AHI1 reduction downregulates Tyk2 and IFN-I signaling activity in macrophages from both MDD patients and depression model mice. Interestingly, we identified a clinical analgesic meptazinol that effectively stimulates AHI1 expression, thus enhancing IFN-I antiviral defense in depression model mice. Our study promotes the understanding of the signaling mechanisms of depression-mediated antiviral immune dysfunction, and reveals meptazinol as an enhancer of antiviral innate immunity in depressive patients.Subject terms: Innate immunity, Ubiquitylation, Cell signalling  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号