首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18948篇
  免费   1392篇
  国内免费   1246篇
  21586篇
  2024年   41篇
  2023年   254篇
  2022年   537篇
  2021年   923篇
  2020年   565篇
  2019年   807篇
  2018年   799篇
  2017年   563篇
  2016年   834篇
  2015年   1107篇
  2014年   1349篇
  2013年   1444篇
  2012年   1673篇
  2011年   1520篇
  2010年   969篇
  2009年   936篇
  2008年   1043篇
  2007年   974篇
  2006年   798篇
  2005年   683篇
  2004年   528篇
  2003年   518篇
  2002年   438篇
  2001年   343篇
  2000年   300篇
  1999年   289篇
  1998年   164篇
  1997年   158篇
  1996年   155篇
  1995年   117篇
  1994年   84篇
  1993年   70篇
  1992年   110篇
  1991年   82篇
  1990年   68篇
  1989年   52篇
  1988年   43篇
  1987年   43篇
  1986年   38篇
  1985年   51篇
  1984年   8篇
  1983年   17篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Osteoporosis, arthritis, Peget's disease, bone tumor, periprosthetic joint infection, and periprosthetic loosening have a common characteristic of osteolysis, which is characterized by the enhanced osteoclastic bone resorptive function. At present, the treatment target of these diseases is to interfere with osteoclastic formation and function. Scutellarein (Scu), a flavonoids compound, can inhibit the progress of tumor and inflammation. However, the role of Scu in inflammatory osteolysis isn’t elucidated clearly. Our study showed that Scu inhibited bone destruction induced by LPS in vivo and OC morphology and function induced by RANKL in vitro. Mechanistic studies revealed that Scu suppressed osteoclastic marker gene expression by RANKL-induced, such as Ctsk9, Mmp9, Acp5, and Atp6v0d2. In addition, we found that the inhibition effects of osteoclastogenesis and bone resorption function of Scu were mediated via attenuating NF-κB and NFAT signaling pathways. In conclusion, the results showed that Scu may become a potential new drug for the treatment of inflammatory osteolysis.  相似文献   
992.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   
993.
Ovarian cancer characterizes as the fourth leading consequence of death associated with cancer for women. Accumulating evidence underscores the vital roles of microRNAs (miRNAs) in preventing ovarian cancer development. Besides, induction of the phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/Akt) pathway associated with the ovarian cancer cell migration and invasion. The study aims to examine the effects of miR-15b on the proliferation, apoptosis, and senescence of human ovarian cancer cells by binding to lysophosphatidic acid receptor 3 (LPAR3) with the involvement of the PI3K/Akt pathway. The positive expression of LPAR3 protein was detected by immunohistochemistry. Then the interaction between miR-15b and LPAR3 was examined. The possible role of miR-15b in ovarian cancer was explored using gain- and loss-of-function experiments. Subsequently, the functions of miR-15b on PI3K/Akt pathway, proliferation, migration, invasion, senescence and apoptosis of ovarian cancer cells were assessed. Furthermore, in vivo tumorigenicity assay in nude mice was performed. LPAR3 was overexpressed, whereas miR-15b was poorly expressed in ovarian cancer tissues. LPAR3 is a direct target of miR-15b. Restored miR-15b promoted Bax expression, apoptosis, and senescence, inhibited expression of LPAR3 and Bcl-2, the extent of PI3K and Akt phosphorylation, as well as ovarian cancer cell proliferation, migration, and invasion. Further, tumor growth was observed to be prevented by miR-15b overexpression. Collectively, our study demonstrates that miR-15b represses the proliferation and drives the senescence and apoptosis of ovarian cancer cells through the suppression of LPAR3 and the PI3K/Akt pathway, highlighting an antitumorigenic role of miR-15b.  相似文献   
994.
995.
996.
Excessive osteoclast formation and function are considered as the main causes of bone lytic disorders such as osteoporosis and osteolysis. Therefore, the osteoclast is a potential therapeutic target for the treatment of osteoporosis or other osteoclast-related diseases. Helvolic acid (HA), a mycotoxin originally isolated from Aspergillus fumigatus , has been discovered as an effective broad-spectrum antibacterial agent and has a wide range of pharmacological properties. Herein, for the first time, HA was demonstrated to be capable of significantly inhibiting receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption in vitro by suppressing nuclear factor of activated T cells 1 (NFATc1) activation. This inhibition was followed by the dramatically decreased expression of NFATc1-targeted genes including Ctr (encoding calcitonin receptor), Acp5 (encoding tartrate-resistant acid phosphatase [TRAcP]), Ctsk (encoding cathepsin K), Atp6v0d2 (encoding the vacuolar H+ ATPase V0 subunit d2 [V-ATPase-d2]) and Mmp9 (encoding matrix metallopeptidase 9) which are osteoclastic-specific genes required for osteoclast formation and function. Mechanistically, HA was shown to greatly attenuate multiple upstream pathways including extracellular signal-regulated kinase (ERK) phosphorylation, c-Fos signaling, and intracellular Ca 2+ oscillation, but had little effect on nuclear factor-κB (NF-κB) activation. In addition, HA also diminished the RANKL-induced generation of intracellular reactive oxygen species. Taken together, our study indicated HA effectively suppressed RANKL-induced osteoclast formation and function. Thus, we propose that HA can be potentially used in the development of a novel drug for osteoclast-related bone diseases.  相似文献   
997.
998.
999.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), the spotted wing drosophila, is a pest endemic to Southeast Asia that invaded the Americas and Europe in 2008. In contrast to most of its congeners, D. suzukii possesses a serrated ovipositor that allows it to lay eggs in unwounded commercial fruits, resulting in severe revenue losses for the industry. The purpose of this study was to determine the susceptibility of known host fruits, including cherry, strawberry, blueberry, and grape, and potential host fruits, such as banana and apple, to attack by D. suzukii. Based on the responses to volatile cues offered in a six‐choice olfactometer, the preference of female D. suzukii was ranked in the following order: strawberry = cherry > banana = apple = blueberry = grape, but in no‐choice and choice oviposition tests, the preferences were ranked as follows: cherry > strawberry = blueberry > grape = banana > apple. Furthermore, we reconfirmed that D. suzukii mainly targets rotten fruit for feeding and ripe fruit for oviposition, and females preferred fruits with intensive mechanical damage. Based on developmental parameters, apple was the least suitable host. This study has implications for the control of D. suzukii, especially in mixed fruit orchards, by providing a promising avenue for exploiting behaviour‐based control tools and emphasizing the importance of phenology in host fruit susceptibility.  相似文献   
1000.
Thioredoxin-interacting protein (TXNIP) is induced by high glucose (HG), whereupon it acts to inhibit thioredoxin, thereby promoting oxidative stress. We have found that TXNIP knockdown in human renal tubular cells helped prevent the epithelial-to-mesenchymal transition (EMT). Here, we studied the potential effect of TXNIP on podocyte phenotypic alterations in diabetic nephropathy (DN) in vivo and in vitro. In conditionally immortalized mouse podocytes under HG conditions, knocking down TXNIP disrupted EMT, reactive oxygen species (ROS) production, and mammalian target of rapamycin (mTOR) pathway activation. Further, Raptor short hairpin RNA (shRNA), Rictor shRNA, and mTOR specific inhibitor KU-0063794 were used to assess if the mTOR signal pathway is involved in HG-induced EMT in podocytes. We found that Raptor shRNA, Rictor shRNA, and KU-0063794 could all restrain HG-induced EMT and ROS production in podocytes. In addition, antioxidant Tempol or N-acetylcysteine presented a prohibitive effect on HG-induced EMT in podocytes. Streptozotocin was utilized to render equally diabetic in wild-type (WT) control and TXNIP −/− (TKO) mice. Diabetes did not increase levels of 24-hr urinary protein, serum creatinine, blood urea nitrogen, and triglyceride in TXNIP −/− mice. Podocyte phenotypic alterations and podocyte loss were detected in WT but not in TKO diabetic mice. Oxidative stress was also suppressed in diabetic TKO mice relative to WT controls. Also, TXNIP deficiency suppresses the activation of mTOR in glomeruli of streptozotocin-induced diabetic mice. Moreover, TXNIP expression, mTOR activation, Nox1, and Nox4 could be detected in renal biopsy tissues of patients with DN. This suggests that decreased TXNIP could ameliorate phenotypic alterations of podocytes via inhibition of mTOR in DN, highlighting TXNIP as a promising therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号