首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5028篇
  免费   542篇
  国内免费   741篇
  2024年   17篇
  2023年   83篇
  2022年   185篇
  2021年   319篇
  2020年   239篇
  2019年   308篇
  2018年   236篇
  2017年   200篇
  2016年   232篇
  2015年   343篇
  2014年   414篇
  2013年   415篇
  2012年   492篇
  2011年   476篇
  2010年   289篇
  2009年   233篇
  2008年   278篇
  2007年   202篇
  2006年   198篇
  2005年   166篇
  2004年   136篇
  2003年   145篇
  2002年   173篇
  2001年   96篇
  2000年   94篇
  1999年   69篇
  1998年   63篇
  1997年   31篇
  1996年   39篇
  1995年   28篇
  1994年   25篇
  1993年   15篇
  1992年   12篇
  1991年   15篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   3篇
  1986年   12篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有6311条查询结果,搜索用时 203 毫秒
161.
162.
Enantiopure sulfoxides can be prepared via the asymmetric oxidation of sulfides using sulfide monooxygenases. The n-octane–water biphasic system was chosen for the bio-oxidation of a water-insoluble phenyl methyl sulfide (PMS) by Rhodococcus sp. CCZU10-1. In this n-octane–water system, the optimum reaction conditions were obtained. (S)-phenyl methyl sulfoxide ((S)-PMSO) with >99.9 % enantiomeric excess formed at 55.3 mM in the n-octane–water biphasic system. Using fed-batch method, a total of 118 mM (S)-PMSO accumulated in 1-L reaction mixture after the 7th feed, and no (R)-PMSO and sulfone were detected. Moreover, Rhodococcus sp. CCZU10-1 displayed fairly good activity and enantioselectivity toward other sulfides. In conclusion, Rhodococcus sp. CCZU10-1 is a promising biocatalyst for synthesizing highly optically active sulfoxides.  相似文献   
163.
Identification of functional programmable mechanical stimulation (PMS) on tendon not only provides the insight of the tendon homeostasis under physical/pathological condition, but also guides a better engineering strategy for tendon regeneration. The aims of the study are to design a bioreactor system with PMS to mimic the in vivo loading conditions, and to define the impact of different cyclic tensile strain on tendon. Rabbit Achilles tendons were loaded in the bioreactor with/without cyclic tensile loading (0.25 Hz for 8 h/day, 0–9% for 6 days). Tendons without loading lost its structure integrity as evidenced by disorientated collagen fiber, increased type III collagen expression, and increased cell apoptosis. Tendons with 3% of cyclic tensile loading had moderate matrix deterioration and elevated expression levels of MMP‐1, 3, and 12, whilst exceeded loading regime of 9% caused massive rupture of collagen bundle. However, 6% of cyclic tensile strain was able to maintain the structural integrity and cellular function. Our data indicated that an optimal PMS is required to maintain the tendon homeostasis and there is only a narrow range of tensile strain that can induce the anabolic action. The clinical impact of this study is that optimized eccentric training program is needed to achieve maximum beneficial effects on chronic tendinopathy management. Biotechnol. Bioeng. 2013; 110: 1495–1507. © 2012 Wiley Periodicals, Inc.  相似文献   
164.
The objective of the current study is to develop a new cryomacroscope prototype for the study of vitrification in large-size specimens. The unique contribution in the current study is in developing a cryomacroscope setup as an add-on device to a commercial controlled-rate cooler and in demonstration of physical events in cryoprotective cocktails containing synthetic ice modulators (SIM)—compounds which hinder ice crystal growth. Cryopreservation by vitrification is a highly complex application, where the likelihood of crystallization, fracture formation, degradation of the biomaterial quality, and other physical events are dependent not only upon the instantaneous cryogenic conditions, but more significantly upon the evolution of conditions along the cryogenic protocol. Nevertheless, cryopreservation success is most frequently assessed by evaluating the cryopreserved product at its end states—either at the cryogenic storage temperature or room temperature. The cryomacroscope is the only available device for visualization of large-size specimens along the thermal protocol, in an effort to correlate the quality of the cryopreserved product with physical events. Compared with earlier cryomacroscope prototypes, the new Cryomacroscope-III evaluated here benefits from a higher resolution color camera, improved illumination, digital recording capabilities, and high repeatability in tested thermal conditions via a commercial controlled-rate cooler. A specialized software package was developed in the current study, having two modes of operation: (a) experimentation mode to control the operation of the camera, record camera frames sequentially, log thermal data from sensors, and save case-specific information; and (b) post-processing mode to generate a compact file integrating images, elapsed time, and thermal data for each experiment. The benefits of the Cryomacroscope-III are demonstrated using various tested mixtures of SIMs with the cryoprotective cocktail DP6, which were found effective in preventing ice growth, even at significantly subcritical cooling rates with reference to the pure DP6.  相似文献   
165.
Seed dispersal distance is influenced by a variety of seed properties and functional responses of dispersers. However, to our knowledge, how and why seed dispersal distances are determined remains poorly understood. In the present study, seeds of sympatric tree species, Pinus koraiensis, Corylus mandshurica, Corylus heterophylla, and Quercus mongolica were released to investigate the effects of rodent abundance, seed type, and seed availability on seed dispersal. Our results showed that seeds of P. koraiensis were dispersed further than those of C. heterophylla and C. mandshurica regardless of the ambient rodent and seed abundances, reflecting a consistent effect of seed type on seed dispersal distances. Seed dispersal distance was greatly facilitated by lower per-capita seed abundance (the ratio of seeds to rodents); however, seed caching and cache survival were benefited from higher per-capita seed abundance. Although seed dispersal and seed caching of a particular tree species can be enhanced by its own seed availability, no consistent influence was detected at interspecific levels, reflecting different interspecific effects of seed availability on seed dispersal of sympatric seed species. Our results provide evidences that the effect of seed availability on seed dispersal should be evaluated in terms of per-capita seed abundance and interspecific effects, rather than the independent influence of seed or disperser abundances.  相似文献   
166.
Controversial roles of FOXP3 in different cancers have been reported previously, while its role in gastric cancer is largely unknown. Here we found that FOXP3 is unexpectedly upregulated in some gastric cancer cells. To test whether increased FOXP3 remains the tumor suppressor role in gastric cancer as seen in other cancers, we test its function in cell proliferation both at basal and TNFα mimicked inflammatory condition. Compared with the proliferation inhibitory role observed in basal condition, FOXP3 is insufficient to inhibit the cell proliferation under TNFα treatment. Molecularly, we found that TNFα induced an interaction between FOXP3 and p65, which in turn drive the FOXP3 away from the promoter of the well known target p21. Our data here suggest that although FOXP3 is upregulated in gastric cancer, its tumor suppressor role has been dampened due to the inflammation environment.  相似文献   
167.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   
168.
CopC is a periplasmic copper Chaperone protein that has a β‐barrel fold and two metal‐binding sites distinct for Cu(II) and Cu(I). In the article, four mutants (Y79F, Y79W, Y79WW83L, Y79WW83F) were obtained by site‐directed mutagenesis. The far‐UV CD spectra of the proteins were similar, suggesting that mutations did not bring any significant changes in secondary structures. Meanwhile the effects of mutations on the protein's function were manifested by Cu(II) binding. Fluorescence lifetime measurement and quenching of tryptophan fluorescence by acrylamide and KI showed that the microenvironment around Trp83 was more hydrophobic than that around Tyr79 in apoCopC. Unfolding experiments induced by guanidinium chloride (GdnHCl), urea provided the conformational stability of each protein. The Δ<ΔG0element> obtained using the model of structural elements was used to show the role of Tyr79 and Trp83. On the one hand, the <ΔG0element> induced by urea for Y79F, Y79W have a loss of 6.51, 2.03 kJ/mol, respectively, compared with apoCopC, proving that replacement of Tyr79 by Phe or Trp all decreased the protein stability, meaning that the hydrogen bonds interactions between Tyr79 and Thr75 played an important role in stabilizing apoCopC. On the other hand, the <ΔG0element> induced by urea for Y79WW83L have a loss of 11.44 kJ/mol, but for Y79WW83F did a raise of 1.82 kJ/mol compared with Y79W. The replacement of Trp83 by Phe and Leu yields opposite effects on protein stability, which suggested that the aromatic ring of Trp83 was important in maintaining the hydrophobic core of apoCopC.  相似文献   
169.
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27–36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.  相似文献   
170.
Highlights? Crystal structure of CCM3-MST4 heterodimeric complex ? Structural mechanism driving CCM3-GCKIII heterodimerization ? Conformational changes required for CCM3-GCKIII heterodimerization ? Synergistic effects of CCM3-MST4 complex on cell proliferation and migration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号