首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1250篇
  免费   106篇
  国内免费   121篇
  1477篇
  2024年   5篇
  2023年   20篇
  2022年   35篇
  2021年   66篇
  2020年   36篇
  2019年   47篇
  2018年   42篇
  2017年   37篇
  2016年   48篇
  2015年   72篇
  2014年   64篇
  2013年   84篇
  2012年   99篇
  2011年   98篇
  2010年   42篇
  2009年   51篇
  2008年   56篇
  2007年   51篇
  2006年   62篇
  2005年   36篇
  2004年   26篇
  2003年   35篇
  2002年   33篇
  2001年   27篇
  2000年   31篇
  1999年   27篇
  1998年   19篇
  1997年   38篇
  1996年   31篇
  1995年   23篇
  1994年   18篇
  1993年   24篇
  1992年   19篇
  1991年   10篇
  1990年   3篇
  1989年   10篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1966年   1篇
  1965年   1篇
  1946年   2篇
排序方式: 共有1477条查询结果,搜索用时 0 毫秒
31.
Brassica rapa L., also called NIUMA, is used empirically in Tibetan medicine for its antioxidant, anti‐inflammatory and antiradiation activities. This study explored the hepatoprotective effects of B. rapa polysaccharides (BRPs) on acute liver injury induced by carbon tetrachloride (CCl4) in mice and the underlying mechanisms. Mice were treated with CCl4 after the oral administration of BRPs (55, 110 and 220 mg/kg) or bifendate (100 mg/kg) for 7 days. Blood and liver samples of mice were collected for analysis after 24 h. The ALP, ALT and AST levels and the biological activities of SOD, MDA and GSH?Px were measured. Histopathological changes in the liver were determined through hematoxylin and eosin staining. Moreover, TNF‐α, IL‐1β and IL‐6 expression levels were detected by commercial reagent kits. Finally, Western blot analysis was used to check the relative expression levels of caspase‐3, p‐JAK2 and p‐STAT3. The BRP pre‐treatment significantly decreased the enzymatic activities of ALT, ALP and AST in the serum, markedly increased the activities of SOD and GSH?Px in the liver and reduced the MDA concentration in the liver. BRPs alleviated hepatocyte injury and markedly inhibited the expression of TNF‐α, IL‐1β and IL‐6, also downregulating the CCl4‐induced hepatic tissue expression of caspase‐3. Furthermore, BRPs inhibited the JAK2/STAT3 signaling pathway in a dose‐dependent manner in the liver. This study demonstrated that BRPs exert hepatoprotective effect against the CCl4‐induced liver injury via modulating the apoptotic and inflammatory responses and downregulating the JAK2/STAT3 signaling pathway. Therefore, B. rapa could be considered a hepatoprotective medicine.  相似文献   
32.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
33.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   
34.
35.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
36.
Kuang  Wenzhong  Liu  Chen  Xu  Hongguang 《Cytotechnology》2021,73(3):447-456
Cytotechnology - Low back pain caused by intervertebral disc degeneration has become a global problem that seriously affects public health. The application of nucleus pulposus tissue engineering to...  相似文献   
37.
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.  相似文献   
38.
热带森林优势种青冈叶片气孔、解剖和形态性状与气候、土壤因子的关联 了解优势树种叶片多水平的功能性状沿海拔梯度的变化及其内在关联,有助于预测优势种应对气候变化的响应与适应。本文研究了青冈属树种叶片气孔、解剖和形态性状沿海拔梯度的变化及其与环境调控因子的关联,探究了其生态策略是否随海拔发生改变。在海南尖峰岭热带森林,沿海拔梯度(400–1400 m)采集了6种常绿青冈:竹叶青冈(Cyclobalanopsis bambusaefolia)、雷公青冈(C. hui)、托盘青冈 (C. patelliformis)、饭甄青冈(C. fleuryi)、吊罗山青冈(C. tiaoloshanica)和亮叶青冈(C. phanera)叶片,用于气孔、解剖和形态性状的测定。研究结果表明,随海拔升高,青冈树种叶片气孔密度、气孔孔隙度指数和叶面积显著增加,但海绵组织厚度比和干物质含量则显着降低。叶片气孔、解剖和形态性状沿海拔梯 度的变化主要受年均温、年降水量和土壤pH 值调控。在低海拔和高海拔处,青冈属采取“耐受”和“竞 争”策略,而在中海拔处,则是“竞争”策略。土壤磷含量和土壤pH 值随海拔的变化可能是驱动其生态 策略转变的主要原因。该结果揭示,热带森林优势树种青冈可通过从气孔细胞-组织解剖结构-叶片水平功能性状的改变来响应环境变化。  相似文献   
39.
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole-genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing-based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.  相似文献   
40.
mtDNA was isolated from cytoplasmic male sterility (CMS) line P3A and its maintainer P3B of kenaf (Hibiscus cannabinus L.). The atp9 gene and its two flanking sequences were obtained using homology cloning and high-efficiency thermal asymmetric interlaced PCR methods. The coding sequences showed only two base pairs difference between the CMS and its maintainer, and shared a homology of over 87 % with atp9 genes from other species in GenBank. However, when comparing the flanking sequences, a 47-bp deletion was characterized at the 3′ flanking sequence of atp9 in the CMS line. Quantitative PCR analysis indicated that the expression level of atp9 in the CMS line was 0.937-fold that of its maintainer. Furthermore, the respiratory rate of anthers in the CMS line was markedly lower than that of its maintainer. The results indicated that the 47-bp deletion at the 3′ flanking sequence of atp9 and/or down-regulated expression of the atp9 gene in the CMS line might be closely related to CMS in kenaf. To confirm whether the 47-bp deletion was specific to cytoplasm of male sterile lines, another 21 varieties were used for further analysis. The results showed that the 47-bp deletion was specific to male sterile cytoplasm (MSC) of kenaf. Based on these, a specific molecular marker was developed to distinguish the MSC from male fertile cytoplasm of kenaf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号