首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6123篇
  免费   587篇
  国内免费   680篇
  7390篇
  2024年   25篇
  2023年   98篇
  2022年   246篇
  2021年   343篇
  2020年   243篇
  2019年   299篇
  2018年   295篇
  2017年   234篇
  2016年   281篇
  2015年   419篇
  2014年   465篇
  2013年   465篇
  2012年   605篇
  2011年   512篇
  2010年   307篇
  2009年   312篇
  2008年   312篇
  2007年   281篇
  2006年   219篇
  2005年   226篇
  2004年   213篇
  2003年   183篇
  2002年   155篇
  2001年   117篇
  2000年   97篇
  1999年   77篇
  1998年   60篇
  1997年   50篇
  1996年   39篇
  1995年   33篇
  1994年   34篇
  1993年   21篇
  1992年   29篇
  1991年   29篇
  1990年   12篇
  1989年   12篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
排序方式: 共有7390条查询结果,搜索用时 0 毫秒
71.
The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).  相似文献   
72.
植物ASR基因研究进展   总被引:1,自引:0,他引:1  
ASR(abscisic acid,stress,ripening-induced)基因是近年来从植物中发现的一类受ABA、胁迫和成熟诱导表达的基因,具有保守的ABA/WDS结构域。ASR基因不仅参与植物对干旱、高盐、低温以及脱落酸的胁迫应答,而且参与植物生命活动的许多过程,如果实发育、成熟和糖代谢等。本文综述了近年来国内外ASR基因的研究进展,主要包括ASR基因和蛋白结构特点、ASR基因家族的进化、ASR基因的表达及可能具有的功能,为植物ASR基因研究提供参考。  相似文献   
73.
Melatonin has been reported to have tumor-suppressive effects via comprehensive molecular mechanisms, and long non-coding RNAs (lncRNAs) may participate in this process. However, the mechanism by which melatonin affects the function of lncRNAs in triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is still unknown. Therefore, we aimed to investigate the differentially expressed mRNAs and lncRNAs in melatonin-treated TNBC cells and the interaction mechanisms. Microarray analyses were performed to identify differentially expressed mRNAs and lncRNAs in TNBC cell lines after melatonin treatment. To explore the functions and underlying mechanisms of the mRNAs and lncRNAs candidates, a series of in vitro experiments were conducted, including CCK-8, Transwell, colony formation, luciferase reporter gene, and RNA immunoprecipitation (RIP) assays, and mouse xenograft models were established. We found that after melatonin treatment, FUNDC1 and lnc049808 downregulated in TNBC cell lines. Knockdown of FUNDC1 and lnc049808 inhibited TNBC cell proliferation, invasion, and metastasis. Moreover, lnc049808 and FUNDC1 acted as competing endogenous RNAs (ceRNAs) for binding to miR-101. These findings indicated that melatonin inhibited TNBC progression through the lnc049808-FUNDC1 pathway and melatonin could be used as a potential therapeutic agent for TNBC.Subject terms: Breast cancer, Non-coding RNAs  相似文献   
74.
Mannose receptor is a member of the C-type lectin receptor family involved in pathogen molecular-pattern recognition, and plays a critical role in shaping host immune response. Single nucleotide polymorphisms (SNPs) in the MRC1 gene may affect expression levels and differences in the structure and function of proteins in different individuals, thereby affecting individual susceptibility to pulmonary tuberculosis. However, to date, MRC1 polymorphisms associated with susceptibility to pulmonary tuberculosis have not yet been reported. The present study aimed to investigate potential associations of SNPs in the MRC1 gene with pulmonary tuberculosis in a Chinese population. Six SNPs (G1186A, G1195A, T1212C, C1221G, C1303T and C1323T) in exon 7 of the MRC1 gene were genotyped using the PCR and DNA sequencing methods in the pulmonary tuberculosis patients and the healthy controls. Linkage disequilibrium analysis was performed between polymorphic sites. The study found that the allele frequency of G1186A (rs34039386) of the MRC1 gene in a Chinese population was higher in the pulmonary tuberculosis group than the healthy control group. There was a significant difference in frequency distribution between the two groups (P = 0.037; OR = 0.76; 95% CI, 0.58-0.98). Genotypic analysis also indicated that the AG genotypes in a Chinese population were significantly correlated with pulmonary tuberculosis (P < 0.01; OR = 0.57; 95% CI, 0.37-0.87). After adjustment for age and gender, G1186A sites were found to be dominant (P < 0.01; OR = 0.59; 95% CI, 0.40-0.87), over-dominant (P = 0.045; OR = 0.69; 95% CI, 0.47-0.99) and additive models (P = 0.041; OR = 0.76; 95% CI, 0.59-0.99) in association with pulmonary tuberculosis. But, no association was found between the other 5 SNPs (G1195A, T1212C, C1221G, C1303T and C1323T) and tuberculosis (P > 0.05). This study is the first to report that genetic variants in the MRC1 gene can be associated with pulmonary tuberculosis in a Chinese population, and may reduce the risk of infecting pulmonary tuberculosis. This also provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.  相似文献   
75.
76.
苦杏仁精油对粘虫的触杀活性研究   总被引:2,自引:0,他引:2  
以粘虫4龄幼虫为对象,采用"点滴法"研究了山杏种仁两种苦杏仁精油(含HCN和去HCN)对粘虫的触杀活性及其生长发育的影响.结果显示,处理后48 h,5~100 μL/mL浓度处理的试虫死亡率均在51.67%以上,40和100 μL/mL浓度处理的粘虫死亡率分别达到了95%(含HCN)/98.33%(去HCN)和100%,48 h时含HCN与除去HCN两种苦杏仁精油对粘虫的触杀致死中浓分别为5.10和4.69 μL/mL;苦杏仁精油对粘虫的化蛹期以及羽化期提前1~3 d,并有一定数量的畸形蛹出现,部分试虫虽能正常化蛹并羽化,但其蛹以及成虫虫体均较对照小,且羽化后蛾体萎缩,活动力降低,因展翅困难而死.可见,两种苦杏仁精油对粘虫具有很强的触杀活性,且去HCN的苦杏仁精油对粘虫的活性高于含HCN的苦杏仁精油,其对粘虫生长发育抑制活性主要表现化蛹期以及羽化期提前,苦杏仁精油有望发展为植物性杀虫剂.  相似文献   
77.
Nutrition had highly influence on the antibiotic production by Xenorhabdus nematophila YL001. Glucose and peptone were identified as the best carbon and nitrogen sources that significantly affected antibiotic production using one-factor-at-a-time approach. Response surface methodology was applied to optimize the medium constituents (Glucose, peptone and minerals) for antibiotic production by X. nematophila YL001. Higher antibiotic activity (328.9 U/ml) was obtained after optimizing medium components. The optimal levels of medium components were (g/l): glucose 6.13, peptone 21.29, MgSO(4).7H(2)O 1.50, (NH(4))(2)SO(4) 2.46, KH(2)PO(4) 0.86, K(2)HPO(4) 1.11 and Na(2)SO(4) 1.72. An overall 16% and 35% increase in antibiotic activity were obtained as compared with mean observed response (283.7U/ml) at zero level of all variables and YSG medium.  相似文献   
78.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   
79.
Shrub encroachment frequently occurs in arid and semi-arid grasslands worldwide and affects the regional carbon balance. Many previous studies have revealed the effects of shrub encroachment on bulk carbon content of grasslands, but molecular evidence is surprisingly lacking. In this study, we examined the chemical composition of plant tissues and soil organic carbon (SOC), and soil microbial communities to identify the effects of shrub (Caragana microphylla) encroachment on SOC storage in the top layer (0–10 cm) along a gradient of natural shrub cover in the grasslands of Inner Mongolia. We found that SOC in the shrub patches was derived mainly from leaves, whereas SOC in the grassy matrix was composed of a mixture of fresh root- and leaf-derived compounds. Compared with pure grassland, the SOC decreased by 29% in the shrub-encroached grasslands (SEGs), and this decrease was enhanced by increasing shrub cover. We also found that free lipids and lignin-derived phenols increased while the ratios of ω-C18/∑C18 and suberin/cutin decreased with increasing shrub cover. In addition, the ratios of fungal to bacterial phospholipid fatty acids (PLFAs) and gram-negative to gram-positive bacterial PLFAs decreased with increasing shrub cover. These results indicate that the encroachment of nitrogen-rich legume shrubs can lead to carbon loss by altering the chemical composition of plant inputs as well as the soil microbial community in grassland ecosystems.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号