全文获取类型
收费全文 | 15571篇 |
免费 | 1343篇 |
国内免费 | 1904篇 |
专业分类
18818篇 |
出版年
2024年 | 52篇 |
2023年 | 281篇 |
2022年 | 587篇 |
2021年 | 905篇 |
2020年 | 701篇 |
2019年 | 812篇 |
2018年 | 755篇 |
2017年 | 553篇 |
2016年 | 724篇 |
2015年 | 1035篇 |
2014年 | 1249篇 |
2013年 | 1278篇 |
2012年 | 1558篇 |
2011年 | 1434篇 |
2010年 | 905篇 |
2009年 | 727篇 |
2008年 | 807篇 |
2007年 | 743篇 |
2006年 | 604篇 |
2005年 | 527篇 |
2004年 | 385篇 |
2003年 | 303篇 |
2002年 | 279篇 |
2001年 | 191篇 |
2000年 | 180篇 |
1999年 | 174篇 |
1998年 | 120篇 |
1997年 | 114篇 |
1996年 | 117篇 |
1995年 | 96篇 |
1994年 | 89篇 |
1993年 | 66篇 |
1992年 | 85篇 |
1991年 | 55篇 |
1990年 | 57篇 |
1989年 | 50篇 |
1988年 | 35篇 |
1987年 | 27篇 |
1986年 | 28篇 |
1985年 | 29篇 |
1984年 | 15篇 |
1983年 | 14篇 |
1982年 | 13篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 10篇 |
1978年 | 4篇 |
1976年 | 9篇 |
1975年 | 8篇 |
1971年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Shuang-Xia Zhao Chun-Ming Pan Huang-Ming Cao Bing Han Jing-Yi Shi Jun Liang Guan-Qi Gao Yong-De Peng Qing Su Jia-Lun Chen Jia-Jun Zhao Huai-Dong Song 《PloS one》2010,5(3)
To determine whether genetic heterogeneity exists in patients with Graves'' disease (GD), the cytotoxic T-lymphocyte associated 4 (CTLA-4) gene, which is implicated a susceptibility gene for GD by considerable genetic and immunological evidence, was used for association analysis in a Chinese Han cohort recruited from various geographic regions. Our association study for the SNPs in the CTLA4 gene in 2640 GD patients and 2204 control subjects confirmed that CTLA4 is the susceptibility gene for GD in the Chinese Han population. Moreover, the logistic regression analysis in the combined Chinese Han cohort revealed that SNP rs231779 (allele frequencies p = 2.81×10−9, OR = 1.35, and genotype distributions p = 2.75×10−9, OR = 1.42) is likely the susceptibility variant for GD. Interestingly, the logistic regression analysis revealed that SNP rs35219727 may be the susceptibility variant to GD in the Shandong population; however, SNP, rs231779 in the CTLA4 gene probably independently confers GD susceptibility in the Xuzhou and southern China populations. These data suggest that the susceptibility variants of the CTLA4 gene varied between the different geographic populations with GD. 相似文献
42.
This study examined emotional modulation of word processing, showing that the recognition potential (RP), an ERP index of word recognition, could be modulated by different emotional states. In the experiment, participants were instructed to compete with pseudo-competitors, and via manipulation of the outcome of this competition, they were situated in neutral, highly positive, slightly positive, highly negative or slightly negative emotional states. They were subsequently asked to judge whether the referent of a word following a series of meaningless character segmentations was an animal or not. The emotional induction task and the word recognition task were alternated. Results showed that 1) compared with the neutral emotion condition, the peak latency of the RP under different emotional states was earlier and its mean amplitude was smaller, 2) there was no significant difference between RPs elicited under positive and negative emotional states in either the mean amplitude or latency, and 3) the RP was not affected by different degrees of positive emotional states. However, compared to slightly negative emotional states, the mean amplitude of the RP was smaller and its latency was shorter in highly negative emotional states over the left hemisphere but not over the right hemisphere. The results suggest that emotional states influence word processing. 相似文献
43.
5-methylcytosine (5-mC) constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions, including gene expression, maintenance of genome integrity, parental imprinting, X-chromosome inactivation, regulation of development, aging, and cancer1. Recently, the presence of an oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), was discovered in mammalian cells, in particular in embryonic stem (ES) cells and neuronal cells2-4. 5-hmC is generated by oxidation of 5-mC catalyzed by TET family iron (II)/α-ketoglutarate-dependent dioxygenases2, 3. 5-hmC is proposed to be involved in the maintenance of embryonic stem (mES) cell, normal hematopoiesis and malignancies, and zygote development2, 5-10. To better understand the function of 5-hmC, a reliable and straightforward sequencing system is essential. Traditional bisulfite sequencing cannot distinguish 5-hmC from 5-mC11. To unravel the biology of 5-hmC, we have developed a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically12.Here we describe a straightforward two-step procedure for selective chemical labeling of 5-hmC. In the first labeling step, 5-hmC in genomic DNA is labeled with a 6-azide-glucose catalyzed by β-GT, a glucosyltransferase from T4 bacteriophage, in a way that transfers the 6-azide-glucose to 5-hmC from the modified cofactor, UDP-6-N3-Glc (6-N3UDPG). In the second step, biotinylation, a disulfide biotin linker is attached to the azide group by click chemistry. Both steps are highly specific and efficient, leading to complete labeling regardless of the abundance of 5-hmC in genomic regions and giving extremely low background. Following biotinylation of 5-hmC, the 5-hmC-containing DNA fragments are then selectively captured using streptavidin beads in a density-independent manner. The resulting 5-hmC-enriched DNA fragments could be used for downstream analyses, including next-generation sequencing.Our selective labeling and capture protocol confers high sensitivity, applicable to any source of genomic DNA with variable/diverse 5-hmC abundances. Although the main purpose of this protocol is its downstream application (i.e., next-generation sequencing to map out the 5-hmC distribution in genome), it is compatible with single-molecule, real-time SMRT (DNA) sequencing, which is capable of delivering single-base resolution sequencing of 5-hmC. 相似文献
44.
Gary Parkinson Simon Gaisford Qian Ru Alastair Lockwood Ashkan Khalili Rose Sheridan Peng T. Khaw Steve Brocchini Hala M. Fadda 《AAPS PharmSciTech》2012,13(4):1063-1072
We are developing tablet dosage forms for implantation directly into the subconjunctival space of the eye. The matrix metalloproteinase inhibitor, ilomastat, has previously been shown to be efficacious at suppressing scarring following glaucoma filtration surgery (GFS). We report on the physical characterisation of ilomastat which is being developed for ocular implantation. Since ilomastat is being considered for implantation it is necessary to examine its polymorphs and their influence on aspects of the in vitro drug release profile. X-ray powder diffraction identified two polymorphs of ilomastat from different commercial batches of the compound. Tablets were prepared from the two different polymorphs. Isothermal perfusion calorimetry was used to show that amorphous content is not increased during tablet formulation. The melting points of the two polymorphs are 188 and 208°C as determined by differential scanning calorimetry. Utilising single crystal X-ray diffraction, the structural conformations and packing arrangements of the different polymorphs were determined. The orthorhombic crystal crystallised as a monohydrate while the second monoclinic crystal form is non-solvated. Ilomastat tablets prepared from the two different solid forms exhibited similar drug release profiles in vitro under conditions mimicking the aqueous composition, volume and flow of the subconjunctival space after GFS. This suggests that a reproducible dose at each time point during release after implantation should be achievable in vivo with ilomastat tablets prepared from the two polymorphs identified. 相似文献
45.
46.
47.
Tao Fang Wang Heng Wang Ai Fen Peng Qing Feng Luo Zhi Li Liu Rong Ping Zhou Song Gao Yang Zhou Wen Zhao Chen 《Biochemical and biophysical research communications》2013
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management. 相似文献
48.
William K. K. Wu Minyi He Liang Zhao Xuegang Sun Hui Li Yong Jiang Yungao Yang Kang Peng 《Cell biochemistry and function》2012,30(4):271-278
Triptolide is a diterpenoid triepoxide derived from the traditional Chinese medical herb Tripterygium wilfordii. In the present study, we demonstrated that this phytochemical attenuated colon cancer growth in vitro and in vivo. Using a proteomic approach, we found that 14‐3‐3 epsilon, a cell cycle‐ and apoptosis‐related protein, was altered in colon cancer cells treated with triptolide. In this regard, triptolide induced cleavage and perinuclear translocation of 14‐3‐3 epsilon. Taken together, our findings suggest that triptolide may merit investigation as a potential therapeutic agent for colon cancer, and its anticancer action may be associated with alteration of 14‐3‐3 epsilon. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
49.
A non-invasive orthotopic hepatocellular carcinoma (HCC) model was created with human HCC cells (HepG-Luc) constitutively
expressing luciferase (Luc) in nude mice. Development of tumor growth and response to anti-tumor therapy combined with 5-fluorouracil
and cisplatin was monitored by whole-body bioluminescent imaging (BLI). Luciferase activity in the tumor, determined by BLI,
correlated with the tumor volume and weight. The anti-tumor therapy proved effective by BLI monitoring. In conclusion, BLI
by luciferase provides a non-invasive method of monitoring tumor activities that can prove useful for therapeutic intervention
studies. 相似文献
50.
William Hancock-Cerutti Zheng Wu Peng Xu Narayana Yadavalli Marianna Leonzino Arun Kumar Tharkeshwar Shawn M. Ferguson Gerald S. Shadel Pietro De Camilli 《The Journal of cell biology》2022,221(7)
Mutations in VPS13C cause early-onset, autosomal recessive Parkinson’s disease (PD). We have established that VPS13C encodes a lipid transfer protein localized to contact sites between the ER and late endosomes/lysosomes. In the current study, we demonstrate that depleting VPS13C in HeLa cells causes an accumulation of lysosomes with an altered lipid profile, including an accumulation of di-22:6-BMP, a biomarker of the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. In addition, the DNA-sensing cGAS-STING pathway, which was recently implicated in PD pathogenesis, is activated in these cells. This activation results from a combination of elevated mitochondrial DNA in the cytosol and a defect in the degradation of activated STING, a lysosome-dependent process. These results suggest a link between ER-lysosome lipid transfer and innate immune activation in a model human cell line and place VPS13C in pathways relevant to PD pathogenesis. 相似文献