首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   54篇
  国内免费   67篇
  2024年   2篇
  2023年   14篇
  2022年   32篇
  2021年   61篇
  2020年   42篇
  2019年   37篇
  2018年   47篇
  2017年   19篇
  2016年   32篇
  2015年   46篇
  2014年   40篇
  2013年   39篇
  2012年   49篇
  2011年   60篇
  2010年   22篇
  2009年   25篇
  2008年   27篇
  2007年   23篇
  2006年   32篇
  2005年   18篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   4篇
  2000年   9篇
  1999年   7篇
  1998年   1篇
  1997年   6篇
  1996年   8篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有761条查询结果,搜索用时 31 毫秒
161.
Toxoplasma gondii is a ubiquitous pathogen infecting one-third of the global population. A significant fraction of toxoplasmosis cases is caused by reactivation of existing chronic infections. The encysted bradyzoites during chronic infection accumulate high levels of amylopectin that is barely present in fast-replicating tachyzoites. However, the physiological significance of amylopectin is not fully understood. Here, we identified a starch synthase (SS) that is required for amylopectin synthesis in T. gondii. Genetic ablation of SS abolished amylopectin production, reduced tachyzoite proliferation, and impaired the recrudescence of bradyzoites to tachyzoites. Disruption of the parasite Ca2+-dependent protein kinase 2 (CDPK2) was previously shown to cause massive amylopectin accumulation and bradyzoite death. Therefore, the Δcdpk2 mutant is thought to be a vaccine candidate. Notably, deleting SS in a Δcdpk2 mutant completely abolished starch accrual and restored cyst formation as well as virulence in mice. Together these results suggest that regulated amylopectin production is critical for the optimal growth, development and virulence of Toxoplasma. Not least, our data underscore a potential drawback of the Δcdpk2 mutant as a vaccine candidate as it may regain full virulence by mutating amylopectin synthesis genes like SS.  相似文献   
162.
Understanding large-scale patterns of biodiversity and their drivers remains central in ecology. Many hypotheses have been proposed, including hydrothermal dynamic hypothesis, tropical niche conservatism hypothesis, Janzen’s hypothesis and a combination model containing energy, water, seasonality and habitat heterogeneity. Yet, their relative contributions to groups with different lifeforms and range sizes remain controversial, which have limited our ability to understand the general mechanisms underlying species richness patterns. Here we evaluated how lifeforms and species range sizes influenced the relative contributions of these three hypotheses to species richness patterns of a tropical family Moraceae. The distribution data of Moraceae species at a spatial resolution of 50km ×50 km and their lifeforms (i.e. shrubs, small trees and large trees) were compiled. The species richness patterns were estimated for the entire family, different life forms and species with different range sizes separately. The effects of environmental variables on species richness were analyzed, and relative contributions of different hypotheses were evaluated across life forms and species range size groups. The species richness patterns were consistent across different species groups and the species richness was the highest in Sichuan, Guangzhou and Hainan provinces, making these provinces the hotspots of this family. Climate seasonality is the primary factor in determining richness variation of Moraceae. The best combination model gave the largest explanatory power for Moraceae species richness across each group of range size and life forms followed by the hydrothermal dynamic hypothesis, Janzen’s hypothesis and tropical niche conservatism hypothesis. All these models has a large shared effects but a low independent effect (< 5%), except rare species. These findings suggest unique patterns and mechanisms underlying rare species richness and provide a theoretical basis for protection of the Moraceae species in China.  相似文献   
163.

Background  

Protein structural data has increased exponentially, such that fast and accurate tools are necessary to access structure similarity search. To improve the search speed, several methods have been designed to reduce three-dimensional protein structures to one-dimensional text strings that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed to improve the linear encoding methodology and develop efficient search tools that can rapidly retrieve structural homologs from large protein databases.  相似文献   
164.
<正>Dear Editor,Kobuvirus,classified as a new genus within the Picornaviridae family in 1999,is a non-enveloped virus with single-stranded,positive-sense genomic RNA(Pringle,1999).This genus contains 3 species currently recoganized:Aichivirus A(Ai V),Aichivirus B(BKo V),and Aichivirus C(PKo V).PKo V was first detected in fecal  相似文献   
165.
166.
Huang PJ  Lin WC  Chen SC  Lin YH  Sun CH  Lyu PC  Tang P 《Genomics》2012,99(2):101-107
MicroRNAs (miRNAs) are a class of extensively studied RNAi-associated small RNAs that play a critical role in eukaryotic gene regulation. However, knowledge on the miRNA and its regulation in unicellular eukaryotes is very limited. In order to obtain a better understanding on the origin of miRNA regulation system, we used deep-sequencing technology to investigate the miRNA expression pattern in four deep-branching unicellular flagellates: Giardia lamblia, Trichomonas vaginalis, Tritrichomonas foetus, and Pentatrichomonas hominis. In addition to the known miRNAs that have been described in G. lamblia and T. vaginalis, we identified 14 ancient animal miRNA families and 13 plant-specific families. Bioinformatics analysis also identified four novel miRNA candidates with reliable precursor structures derived from mature tRNAs. Our results indicated that miRNAs are likely to be a general feature for gene regulation throughout unicellular and multicellular eukaryotes and some of them may derive from unconventional ncRNAs such as snoRNA and tRNA.  相似文献   
167.
香螺精子发生及精子超微结构   总被引:5,自引:0,他引:5  
侯林  高岩  邹向阳  毕相东 《动物学报》2006,52(4):746-754
本文采用透射电镜技术对香螺(NpatunedecumingiCrosse)精子发生过程进行了观察。结果表明,精原细胞胞质中含有大量的线粒体;初、次级精母细胞的细胞核和大量的线粒体呈极性分布;精子细胞分化过程中,细胞核形态、核内物质以及线粒体的形态发生显著变化;细胞核的核质由不均匀颗粒状浓缩成纤丝状,再浓缩成细线形,最后呈致密均匀状态,细胞核由近圆形伸长为粗线形,具有核后窝;在细胞核后端有8个膨大的线粒体,由卵圆形变为螺旋形,弯曲盘绕在轴丝外部,形成精子的中段;根据细胞核和线粒体的变化特点,将精子形成分为早、中、后三个时期。香螺典型性精子属于进化型,头部呈线形,中段加长,糖原颗粒包围轴丝构成主段。在精子发生过程中,细胞质内没有发达的高尔基复合体和前顶体池,没有观察到香螺精子的顶体。在成熟个体的精巢内,同时存在不具有受精能力的畸变精子。  相似文献   
168.
We have demonstrated previously that immunization with tumor-derived endoplasmic reticulum (ER) chaperone glucose-regulated protein 170 (grp170) elicits potent antitumor immunity. In the present study, we determine the impact of extracellular targeting grp170 by molecular engineering on tumor immunogenicity and potential use of grp170-secreting tumor cells as a cancer vaccine. grp170 depleted of ER retention sequence "KNDEL," when secreted by B16 tumor cells, maintained its highly efficient chaperoning activities and was significantly superior to both hsp70 and gp96. The continued secretion of grp170 dramatically reduced the tumorigenicity of B16 tumor cells in vivo, although the modification did not alter its transformation phenotype and cell growth rate. C57BL/6 mice that rejected grp170-secreting B16 tumor cells (B16-sgrp170) developed a strong CTL response recognizing melanocyte differentiation Ag TRP2 and were resistant to subsequent tumor challenge. B16-sgrp170 cells also stimulated the production of proinflammatory cytokines by cocultured dendritic cells. Depletion studies in vivo indicate that NK cells play a primary role in elimination of viable B16-sgrp170 tumor cells inoculated into the animals, whereas both NK cells and CD8(+) T cells are required for a long-term protection against wild-type B16 tumor challenge. Both the secreted and endogenous grp170, when purified from the B16 tumor, exhibited potent tumor-protective activities. However, the B16-sgrp170 cell appears to be more effective than tumor-derived grp170. Thus, molecular engineering of tumor cell to release the largest ER chaperone grp170 is capable of eliciting innate as well as adaptive immune responses, which may provide an effective cell-based vaccination approach for cancer immunotherapy.  相似文献   
169.
170.
Liu YJ  Cheng CS  Lai SM  Hsu MP  Chen CS  Lyu PC 《Proteins》2006,63(4):777-786
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity. We report herein the nuclear magnetic resonance solution structure of VrD1 and the implication on its insecticidal activity. The root-mean-square deviation values are 0.51 +/- 0.35 and 1.23 +/- 0.29 A for backbone and all heavy atoms, respectively. The VrD1 structure comprises a triple-stranded antiparallel beta-sheet, an alpha-helix, and a 3(10) helix stabilized by four disulfide bonds, forming a typical cysteine-stabilized alphabeta motif. Among plant defensins of known structure, VrD1 is the first to contain a 3(10) helix. Glu26 is highly conserved among defensins; VrD1 contains an arginine at this position, which may induce a shift in the orientation of Trp10, thereby promoting the formation of this 3(10) helix. Moreover, VrD1 inhibits Tenebrio molitor alpha-amylase. Alpha-amylase has an essential role in the digestion of plant starch in the insect gut, and expression of the common bean alpha-amylase inhibitor 1 in transgenic pea imparts complete resistance against bruchids. These results imply that VrD1 insecticidal activity has its basis in the inhibition of a polysaccharide hydrolase. Sequence and structural comparisons between two groups of plant defensins having different specificity toward insect alpha-amylase reveal that the loop between beta2 and beta3 is the probable binding site for the alpha-amylase. Computational docking experiments were used to study VrD1-alpha-amylase interactions, and these results provide information that may be used to improve the insecticidal activity of VrD1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号