全文获取类型
收费全文 | 4914篇 |
免费 | 382篇 |
国内免费 | 275篇 |
专业分类
5571篇 |
出版年
2024年 | 9篇 |
2023年 | 60篇 |
2022年 | 141篇 |
2021年 | 231篇 |
2020年 | 159篇 |
2019年 | 191篇 |
2018年 | 185篇 |
2017年 | 115篇 |
2016年 | 214篇 |
2015年 | 307篇 |
2014年 | 326篇 |
2013年 | 351篇 |
2012年 | 430篇 |
2011年 | 407篇 |
2010年 | 234篇 |
2009年 | 225篇 |
2008年 | 276篇 |
2007年 | 247篇 |
2006年 | 202篇 |
2005年 | 155篇 |
2004年 | 149篇 |
2003年 | 146篇 |
2002年 | 117篇 |
2001年 | 89篇 |
2000年 | 81篇 |
1999年 | 64篇 |
1998年 | 28篇 |
1997年 | 41篇 |
1996年 | 51篇 |
1995年 | 28篇 |
1994年 | 26篇 |
1993年 | 23篇 |
1992年 | 45篇 |
1991年 | 29篇 |
1990年 | 21篇 |
1989年 | 18篇 |
1988年 | 23篇 |
1987年 | 18篇 |
1986年 | 13篇 |
1985年 | 13篇 |
1984年 | 8篇 |
1983年 | 17篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1980年 | 5篇 |
1977年 | 4篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 3篇 |
1965年 | 3篇 |
排序方式: 共有5571条查询结果,搜索用时 15 毫秒
121.
Antrodia camphorata is a well-known medicinal mushroom in Taiwan and has been studied for decades, especially with focus on anti-cancer activity. Polysaccharides are the major bioactive compounds reported with anti-cancer activity, but the debates on how they target cells still remain. Research addressing the encapsulation of polysaccharides from A. camphorata extract (ACE) to enhance anti-cancer activity is rare. In this study, ACE polysaccharides were nano-encapsulated in chitosan-silica and silica (expressed as ACE/CS and ACE/S, respectively) to evaluate the apoptosis effect on a hepatoma cell line (Hep G2). The results showed that ACE polysaccharides, ACE/CS and ACE/S all could damage the Hep G2 cell membrane and cause cell death, especially in the ACE/CS group. In apoptosis assays, DNA fragmentation and sub-G1 phase populations were increased, and the mitochondrial membrane potential decreased significantly after treatments. ACE/CS and ACE/S could also increase reactive oxygen species (ROS) generation, induce Fas/APO-1 (apoptosis antigen 1) expression and elevate the proteolytic activities of caspase-3, caspase-8 and caspase-9 in Hep G2 cells. Unsurprisingly, ACE/CS induced a similar apoptosis mechanism at a lower dosage (ACE polysaccharides = 13.2 μg/mL) than those of ACE/S (ACE polysaccharides = 21.2 μg/mL) and ACE polysaccharides (25 μg/mL). Therefore, the encapsulation of ACE polysaccharides by chitosan-silica nanoparticles may provide a viable approach for enhancing anti-tumor efficacy in liver cancer cells. 相似文献
122.
123.
Transition from Diffusion‐Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring 下载免费PDF全文
Qasim Mahmood Sul Ki Park Kideok D. Kwon Sung‐Jin Chang Jin‐Yong Hong Guozhen Shen Young Mee Jung Tae Jung Park Sung Woon Khang Woo Sik Kim Jing Kong Ho Seok Park 《Liver Transplantation》2016,6(1)
2D nanomaterials have been found to show surface‐dominant phenomena and understanding this behavior is crucial for establishing a relationship between a material's structure and its properties. Here, the transition of molybdenum disulfide (MoS2) from a diffusion‐controlled intercalation to an emergent surface redox capacitive behavior is demonstrated. The ultrafast pseudocapacitive behavior of MoS2 becomes more prominent when the layered MoS2 is downscaled into nanometric sheets and hybridized with reduced graphene oxide (RGO). This extrinsic behavior of the 2D hybrid is promoted by the fast Faradaic charge‐transfer kinetics at the interface. The heterostructure of the 2D hybrid, as observed via high‐angle annular dark field–scanning transmission electron microscopy and Raman mapping, with a 1T MoS2 phase at the interface and a 2H phase in the bulk is associated with the synergizing capacitive performance. This 1T phase is stabilized by the interactions with the RGO. These results provide fundamental insights into the surface effects of 2D hetero‐nanosheets on emergent electrochemical properties. 相似文献
124.
Yan Chen Tangjuan Liu Ke Wang Changchun Hou Shuangqi Cai Yingying Huang Zhongye Du Hong Huang Jinliang Kong Yiqiang Chen 《PloS one》2016,11(4)
Biofilm formed by Staphylococcus aureus significantly enhances antibiotic resistance by inhibiting the penetration of antibiotics, resulting in an increasingly serious situation. This study aimed to assess whether baicalein can prevent Staphylococcus aureus biofilm formation and whether it may have synergistic bactericidal effects with antibiotics in vitro. To do this, we used a clinically isolated strain of Staphylococcus aureus 17546 (t037) for biofilm formation. Virulence factors were detected following treatment with baicalein, and the molecular mechanism of its antibiofilm activity was studied. Plate counting, crystal violet staining, and fluorescence microscopy revealed that 32 μg/mL and 64 μg/mL baicalein clearly inhibited 3- and 7-day biofilm formation in vitro. Moreover, colony forming unit count, confocal laser scanning microscopy, and scanning electron microscopy showed that vancomycin (VCM) and baicalein generally enhanced destruction of biofilms, while VCM alone did not. Western blotting and real-time quantitative polymerase chain reaction analyses (RTQ-PCR) confirmed that baicalein treatment reduced staphylococcal enterotoxin A (SEA) and α-hemolysin (hla) levels. Most strikingly, real-time qualitative polymerase chain reaction data demonstrated that 32 μg/mL and 64 μg/mL baicalein downregulated the quorum-sensing system regulators agrA, RNAIII, and sarA, and gene expression of ica, but 16 μg/mL baicalein had no effect. In summary, baicalein inhibited Staphylococcus aureus biofilm formation, destroyed biofilms, increased the permeability of vancomycin, reduced the production of staphylococcal enterotoxin A and α-hemolysin, and inhibited the quorum sensing system. These results support baicalein as a novel drug candidate and an effective treatment strategy for Staphylococcus aureus biofilm-associated infections. 相似文献
125.
Bret Wankel Jiangyong Ouyang Xuemei Guo Krassimira Hadjiolova Jeremy Miller Yi Liao Daniel Kai Long Tham Rok Romih Leonardo R. Andrade Iwona Gumper Jean-Pierre Simon Rakhee Sachdeva Tanya Tolmachova Miguel C. Seabra Mitsunori Fukuda Nicole Schaeren-Wiemers Wan Jin Hong David D. Sabatini Xue-Ru Wu Xiangpeng Kong Gert Kreibich Michael J. Rindler Tung-Tien Sun 《Molecular biology of the cell》2016,27(10):1621-1634
Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking. 相似文献
126.
Gorny MK Sampson J Li H Jiang X Totrov M Wang XH Williams C O'Neal T Volsky B Li L Cardozo T Nyambi P Zolla-Pazner S Kong XP 《PloS one》2011,6(12):e27780
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs. 相似文献
127.
Sharifah Nurain Syed Zanaruddin Pei San Yee Seen Yii Hor Yink Heay Kong Wan Maria Nabillah Wan Abd Ghani Wan Mahadzir Wan Mustafa Rosnah Binti Zain Stephen S. Prime Zainal Ariff Abd Rahman Sok-Ching Cheong 《PloS one》2013,8(11)
Objectives
The frequency of common oncogenic mutations and TP53 was determined in Asian oral squamous cell carcinoma (OSCC).Materials and Methods
The OncoCarta™ panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits.Results
Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits.Conclusion
Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools. 相似文献128.
129.
Jianwen Liang Xiaona Li Yang Zhao Lyudmila V. Goncharova Weihan Li Keegan R. Adair Mohammad Norouzi Banis Yongfeng Hu Tsun‐Kong Sham Huan Huang Li Zhang Shangqian Zhao Shigang Lu Ruying Li Xueliang Sun 《Liver Transplantation》2019,9(38)
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries. 相似文献
130.
Chen X Shang H Qiu X Fujiwara N Cui L Li XM Gao TM Kong J 《Neurochemical research》2012,37(4):835-845
Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly
related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study
the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox
state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative
stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress,
it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased
levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate
an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation
of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation
of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the
formation of disulfide bond-independent aggregation of SOD1. 相似文献