首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7370篇
  免费   654篇
  国内免费   899篇
  2024年   23篇
  2023年   119篇
  2022年   306篇
  2021年   421篇
  2020年   318篇
  2019年   383篇
  2018年   359篇
  2017年   275篇
  2016年   320篇
  2015年   442篇
  2014年   560篇
  2013年   628篇
  2012年   691篇
  2011年   594篇
  2010年   399篇
  2009年   361篇
  2008年   386篇
  2007年   352篇
  2006年   303篇
  2005年   271篇
  2004年   251篇
  2003年   242篇
  2002年   186篇
  2001年   153篇
  2000年   102篇
  1999年   92篇
  1998年   73篇
  1997年   47篇
  1996年   51篇
  1995年   40篇
  1994年   39篇
  1993年   29篇
  1992年   19篇
  1991年   21篇
  1990年   12篇
  1989年   13篇
  1988年   8篇
  1987年   13篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1950年   1篇
排序方式: 共有8923条查询结果,搜索用时 46 毫秒
991.
992.
Genetic analysis is crucial to the understanding, exploitation, and control of microorganisms. The advent of CRISPR-Cas-based genome-editing techniques, particularly those mediated by the single-effector (Cas9 and Cas12a) class 2 CRISPR-Cas systems, has revolutionized the genetics in model eukaryotic organisms. However, their applications in prokaryotes are rather limited, largely owing to the exceptional diversity of DNA homeostasis in microorganisms and severe cytotoxicity of overexpressing these nuclease proteins in certain genotypes. Remarkably, CRISPR-Cas systems belonging to different classes and types are continuously identified in prokaryotic genomes and serve as a deep reservoir for expansion of the CRISPR-based genetic toolkits. ~90% of the CRISPR-Cas systems identified so far belong to the class 1 system which hinges on multi-protein effector complexes for DNA interference. Harnessing these widespread native CRISPR-Cas systems for ‘built-in’ genome editing represents an emerging and powerful genetic tool in prokaryotes, especially in the genetically recalcitrant non-model species and strains. In this progress review, we introduce the general workflow of this emerging editing platform and summarize its establishment in a growing number of prokaryotes by harnessing the most widespread, diverse type I CRISPR-Cas systems present in their genomes. We also discuss the various factors affecting the success and efficiency of this editing platform and the corresponding solutions.  相似文献   
993.
994.
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+/calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood–brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.

  相似文献   

995.
While plasticity is typically associated with persistent modifications of synaptic strengths, recent studies indicated that modulations of dendritic excitability may form the other part of the engram and dynamically affect computational processing and output of neuronal circuits. However it remains unknown whether modulation of dendritic excitability is controlled by synaptic changes or whether it can be distinct from them. Here we report the first observation of the induction of a persistent plastic decrease in dendritic excitability decoupled from synaptic stimulation, which is localized and purely activity-based. In rats this local plasticity decrease is conferred by CamKII mediated phosphorylation of A-type potassium channels upon interaction of a back propagating action potential (bAP) with dendritic depolarization.  相似文献   
996.
997.
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified.However,molecular mechanisms of most of these mutants remain to be explored.Here we report the identification of a gene Bm-app is responsible for the silkworm minute wing(mw)mutation which exhibits exceedingly small wings during pupal and adult stages.Compared with the wild type silkworm,relative messenger RNA expression of Bm-app is significantly decreased in the ul 1 mutant strain which shows mw phenotype.A 10 bp insertion in the putative promoter region of the Bm-app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm-app promoter activity.Furthermore,clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases-mediated depletion of the Bm-app induced similar wing defects which appeared in the mw mutant,demonstrating that Bm-app controls wing development in B.mori.Bm-app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins,indicating that it is required for cell mitosis and growth during wing development.We also discuss the possibility that Bm-app regulates wing development through the Hippo signaling pathway in B.mori.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号