首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7405篇
  免费   652篇
  国内免费   900篇
  2024年   24篇
  2023年   119篇
  2022年   306篇
  2021年   422篇
  2020年   318篇
  2019年   383篇
  2018年   358篇
  2017年   275篇
  2016年   320篇
  2015年   444篇
  2014年   559篇
  2013年   627篇
  2012年   692篇
  2011年   591篇
  2010年   403篇
  2009年   362篇
  2008年   386篇
  2007年   353篇
  2006年   304篇
  2005年   273篇
  2004年   252篇
  2003年   242篇
  2002年   186篇
  2001年   155篇
  2000年   102篇
  1999年   94篇
  1998年   73篇
  1997年   48篇
  1996年   52篇
  1995年   40篇
  1994年   40篇
  1993年   32篇
  1992年   19篇
  1991年   21篇
  1990年   12篇
  1989年   14篇
  1988年   8篇
  1987年   13篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   7篇
  1982年   10篇
  1981年   3篇
  1972年   1篇
  1969年   1篇
  1950年   1篇
排序方式: 共有8957条查询结果,搜索用时 15 毫秒
191.
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σK during sporulation. To elucidate features of Pro-σK important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σK was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σK residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2′). These features appear to be conserved among Pro-σK orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2′ of Pro-σK. A Lys residue at P3′ of Pro-σK could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9′). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σK. The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.  相似文献   
192.
The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells'' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD.  相似文献   
193.
194.
195.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   
196.
Describing the biogeography of bacterial communities within the human body is critical for establishing healthy baselines from which to detect differences associated with diseases. Little is known, however, about the baseline of normal salivary microbiota from healthy Chinese children and adults. With parallel barcoded 454 pyrosequencing, the bacterial diversity and richness of saliva were thoroughly investigated from ten healthy Chinese children and adults. The overall taxonomic distribution of our metagenomic data demonstrated that the diversity of salivary microbiota from children was more complex than adults, while the composition and richness of salivary microbiota were similar in children and adults, especially for predominant bacteria. A large number of bacterial phylotypes were shared by healthy children and adults, indicating the existence of a core salivary microbiome. In children and adults, the vast majority of sequences in salivary microbiota belonged to Streptococcus, Prevotella, Neisseria, Haemophilus, Porphyromonas, Gemella, Rothia, Granulicatella, Fusobacterium, Actinomyces, Veillonella, and Aggregatibacter, which constituted the major components of normal salivary microbiota. With the exception of Actinomyces, the other seven non-predominant bacteria including Moraxella, Leptotrichia, Peptostreptococcus, Eubacterium, and members of Neisseriaceae, Flavobacteriaceae, and SR1 showed significant differences between children and adults (p?<?0.05). We first established the framework of normal salivary microbiota from healthy Chinese children and adults. Our data represent a critical step for determining the diversity of healthy microbiota in Chinese children and adults, and our data established a platform for additional large-scale studies focusing on the interactions between health and diseases in the future.  相似文献   
197.
Rhesus macaques have long been used as animal models for various human diseases; the susceptibility and/or resistance to some of these diseases are related to the major histocompatibility complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, Mamu-DPA1, Mamu-DQA1, and Mamu-DRA alleles were investigated in 30 Chinese rhesus macaques by gene cloning and sequencing. A total of 14 Mamu-DPA1, 17 Mamu-DQA1, and 9 Mamu-DRA alleles were identified in this study. Of these alleles, 22 novel sequences have not been documented in earlier studies, including nine Mamu-DPA1, ten Mamu-DQA1, and three Mamu-DRA alleles. Interestingly, like Mafa-DQA1 and Mafa-DPA1, more than two Mamu-DQA1 and Mamu-DPA1 alleles were detected in one animal in this study, which suggested that they might represent gene duplication. If our findings can be validated by other studies, it will further increase the number of known Mamu-DPA1 and Mamu-DQA1 polymorphisms. Our data also indicated significant differences in MHC class II allele distribution among the Chinese rhesus macaques, Vietnamese cynomolgus macaques, and the previously reported rhesus macaques, which were mostly of Indian origin. This information will not only promote the understanding of Chinese rhesus macaque MHC diversity and polymorphism but will also facilitate the use of Chinese rhesus macaques in studies of human disease.  相似文献   
198.
In vitro organogenesis is well-controlled and thus provides an ideal system to study mechanisms of plant organ development. Although it has been well investigated for a long time that exogenous hormones play important roles in determining the types of organs regenerated in vitro, there is currently limited information available for other key factors that mediate de novo organ regeneration. Here, we reported simple and efficient one-step processes for evaluating capacities of inflorescence stem-derived in vitro organogenesis between two different ecotypes in Arabidopsis. Different types of organs, including shoots and roots were initiated from inflorescence stem explants cultured on the media containing 216 combinations of exogenous auxin and cytokinin. Further, we showed that Wassilewskija ecotype had the much higher shoot regeneration capacity than Columbia with different combinations of hormones, indicating that the ecotype is an essential factor determining de novo organogenesis. Our results also suggested that the defined expression patterns of genes involved in auxin and cytokinin biosynthesis were correlated with the variations in organogenesis capacities between the two ecotypes. Thus, in vitro organogenesis is likely regulated by ecotypes through mediating endogenous hormonal biosynthesis.  相似文献   
199.
Coffee is one of the world’s most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome.  相似文献   
200.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号