首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8896篇
  免费   758篇
  国内免费   1018篇
  10672篇
  2024年   30篇
  2023年   140篇
  2022年   342篇
  2021年   489篇
  2020年   370篇
  2019年   434篇
  2018年   403篇
  2017年   317篇
  2016年   386篇
  2015年   532篇
  2014年   665篇
  2013年   740篇
  2012年   799篇
  2011年   728篇
  2010年   475篇
  2009年   429篇
  2008年   472篇
  2007年   424篇
  2006年   391篇
  2005年   328篇
  2004年   310篇
  2003年   276篇
  2002年   221篇
  2001年   173篇
  2000年   119篇
  1999年   121篇
  1998年   93篇
  1997年   71篇
  1996年   77篇
  1995年   59篇
  1994年   52篇
  1993年   38篇
  1992年   28篇
  1991年   30篇
  1990年   16篇
  1989年   22篇
  1988年   13篇
  1987年   18篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   
902.
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N‐oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.  相似文献   
903.
Sprague Dawley rats and Kunming (KM) mice are artificially infected with type II Toxoplasma gondii strain Prugniaud (Pru) to generate toxoplasmosis, which is a fatal disease mediated by T. gondii invasion of the central nervous system (CNS) by unknown mechanisms. The aim is to explore the mechanism of differential susceptibility of mice and rats to T. gondii infection. Therefore, a strategy of isobaric tags for relative and absolute quantitation (iTRAQ) is established to identify differentially expressed proteins (DEPs) in the rats’ and the mice's brains compared to the healthy groups. In KM mice, which is susceptible to T. gondii infection, complement component 3 (C3) is upregulated and the tight junction (TJ) pathway shows a disorder. It is presumed that T. gondii‐stimulated C3 disrupts the TJ of the blood–brain barrier in the CNS. This effect allows more T. gondii passing to the brain through the intercellular space.  相似文献   
904.
Aims Nitrogen enrichment may affect ‘community invertebrate herbivory’ (hereafter ‘herbivory’) directly by changing plant species’ specific herbivory, or indirectly by altering the composition of natural plant communities. Here, we investigated how community composition altered the community herbivory in natural ecosystems and compared the relative importance of direct and indirect effects of nitrogen addition on community herbivory.  相似文献   
905.
906.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   
907.
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.  相似文献   
908.
Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation.  相似文献   
909.
热球菌目(Thermococcales)是一类分离自浅海热泉或者深海热液口的超嗜热微生物,包括火球菌(Pyrococcus)、热球菌(Thermococcus)、古老球菌(Palaeococcus)。研究其生命活动的分子机制,基因的功能等必须借助遗传操作系统。由于选择标记的限制,Thermococcales遗传操作系统落后于其他菌株。近年来,在Thermococcales发现了内源质粒并可以将其改造用作遗传工具。如在Thermococcus kodakarensis及Pyrococcus furious等菌株内都建立了成熟的遗传系统,并用于基因敲除以及基因表达。将就Thermococcales内源质粒的发现和遗传操作系统的发展与应用加以阐述。  相似文献   
910.
目的制备系统性表达人载脂蛋白C3(APOC3)基因的转基因小鼠,建立高血脂小鼠模型。方法将人APOC3基因插入系统性表达启动子下游,构建转基因表达载体,通过显微注射法建立人APOC3转基因C57BL/6J小鼠。并利用特异引物PCR法鉴定转基因小鼠的基因型,Western blot检测基因表达水平,血生化分析检测不同月龄转基因小鼠与同龄野生型小鼠的血脂指标,脂肪染色观察肝脏脂肪水平。结果建立了高表达人APOC3基因的转基因小鼠品系;转入的人APOC3基因在血液、肝脏、小肠、肌肉、心脏、肾脏、脾脏中均有明显表达;不同月龄转基因小鼠的血浆甘油三酯水平明显高于同龄野生型小鼠;转基因小鼠的肝脏脂肪含量高于野生型小鼠。结论系统性表达人APOC3基因的转基因小鼠表现高脂血症表型,可以作为高血脂以及高血脂相关的心血管病的工具动物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号