全文获取类型
收费全文 | 1225篇 |
免费 | 100篇 |
国内免费 | 76篇 |
专业分类
1401篇 |
出版年
2023年 | 14篇 |
2022年 | 38篇 |
2021年 | 63篇 |
2020年 | 28篇 |
2019年 | 47篇 |
2018年 | 55篇 |
2017年 | 28篇 |
2016年 | 44篇 |
2015年 | 68篇 |
2014年 | 91篇 |
2013年 | 92篇 |
2012年 | 80篇 |
2011年 | 94篇 |
2010年 | 64篇 |
2009年 | 71篇 |
2008年 | 65篇 |
2007年 | 46篇 |
2006年 | 58篇 |
2005年 | 45篇 |
2004年 | 29篇 |
2003年 | 35篇 |
2002年 | 40篇 |
2001年 | 25篇 |
2000年 | 23篇 |
1999年 | 26篇 |
1998年 | 11篇 |
1997年 | 8篇 |
1996年 | 7篇 |
1995年 | 9篇 |
1994年 | 4篇 |
1993年 | 8篇 |
1992年 | 11篇 |
1991年 | 6篇 |
1990年 | 6篇 |
1989年 | 7篇 |
1988年 | 4篇 |
1987年 | 7篇 |
1986年 | 8篇 |
1985年 | 7篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1981年 | 2篇 |
1977年 | 2篇 |
1975年 | 4篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1964年 | 2篇 |
1960年 | 1篇 |
排序方式: 共有1401条查询结果,搜索用时 15 毫秒
21.
Jayant James Jayasundar Jeong Ho Ju Lilin He Dazhi Liu Flora Meilleur Jinkui Zhao David J. E. Callaway Zimei Bu 《The Journal of biological chemistry》2012,287(44):37119-37133
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin. 相似文献
22.
Linlin Tang Huadan Ye Qingxiao Hong Lingyan Wang Qinwen Wang Hongwei Wang Leiting Xu Shizhong Bu Lina Zhang Jia Cheng Panpan Liu Yanping Le Meng Ye Yifeng Mai Shiwei Duan 《Gene》2014
Background
The GCK gene encodes hexokinase 4, which catalyzes the first step in most glucose metabolism pathways. The purpose of our study is to assess the contribution of GCK methylation to type 2 diabetes (T2D).Methods and results
GCK methylation was evaluated in 48 T2D cases and 48 age- and gender-matched controls using the bisulphite pyrosequencing technology. Among the four CpG sites in the methylation assay, CpG4 and the other three CpGs (CpG1-3) were not in high correlation (r < 0.5). Significantly elevated methylation levels of GCK CpG4 methylation were observed in T2D patients than in the healthy controls (P = 0.004). A breakdown analysis by gender indicated that the association between CpG4 methylation and T2D was specific to males (P = 0.002). It is intriguing that another significant male-specific association was also found between GCK CpG4 methylation and total cholesterol (TC) concentration (r = 0.304, P = 0.036).Conclusion
Our results showed that elevated GCK CpG4 methylation might suggest a risk of T2D in Chinese males. Gender disparity in GCK CpG4 methylation might provide a clue to elaborate the pathogenesis of T2D. 相似文献23.
Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible. 相似文献
24.
Xufeng Li Chunyu Jiang Xiaocong Wu Yao Sun Junguo Bu Jiqiang Li Mingxing Xiao Yanfang Zheng Jiren Zhang 《Cell biochemistry and biophysics》2014,70(2):1369-1376
Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors. The aim of this study was to investigate the biology characteristics of ESCC by analyzing microRNA and mRNA expression profile. We used BRB-array tools to analyze the deregulated microRNA and mRNA between esophageal squamous cell carcinomas and paired normal adjacent tissues. We used miRTrail and protein–protein interaction methods to explore the related pathways and networks of deregulated microRNA and mRNA. By combining the results of pathways and networks, we found that the deregulated microRNA and their deregulated target mRNA are enriched in the following pathways: DNA replication, cell cycle, ECM-receptor interaction, focal adhesion, mismatch repair, and pathways in cancer. The results showed that many deregulated microRNAs and mRNAs may play a vital role in the pathogenesis of ESCC, and the systems biology approach is very helpful to explore molecular mechanism of ESCC. 相似文献
25.
Amyloid-β (Aβ) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Aβ is produced through proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP), by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy. 相似文献
26.
Xie G Uttamchandani M Chen GY Bu X Lin SS Wong KM Yan W Yao SQ Guo Z 《Bioorganic & medicinal chemistry letters》2002,12(6):989-992
Apparent kinetic constants k(cat) and K(m) were determined for tyrocidine thioesterase (TycC TE) using randomized peptide N-acetylcysteamine thioesters as substrate analogues. The enzyme has been found to be adequately active for the synthesis of positional-scanning libraries for novel antibiotic screening with reduced k(cat)/K(m) in the range of 2 to 82 folds lower than that of the wild-type sequence 相似文献
27.
C-W Fan T Chen Y-N Shang Y-Z Gu S-L Zhang R Lu S-R OuYang X Zhou Y Li W-T Meng J-K Hu Y Lu X-F Sun H Bu Z-G Zhou X-M Mo 《Cell death & disease》2013,4(10):e828
Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial–mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients. 相似文献
28.
29.
Yuan M Luo M Song Y Xu Q Wang X Cao Y Bu X Ren Y Hu X 《Bioorganic & medicinal chemistry》2011,19(3):1189-1196
Several recent developments suggest that the human glyoxalase I (GLO I) is a potential target for anti-tumor drug development. In present study, a series of curcumin derivatives with high inhibitory activity against human GLO I were discovered. Inhibition constant (K(i)) values of compounds 8, 9, 10, 11 and 13 to GLO I are 4.600μM, 2.600μM, 3.200μM, 3.600μM and 3.600μM, respectively. To elucidate the structural features of potent inhibitors, docking-based three-dimensional structure-activity relationship (3D-QSAR) analyses were performed. Satisfactory agreement between experiment and theory suggests that comparative molecular similarity index analysis (CoMSIA) modeling exhibit much better correlation and predictive power. The cross-validated q(2) value is 0.638 while no-validation r(2) value is 0.930. Integrated with docking-based 3D-QSAR CoMSIA modeling, molecular surface property (electrostatic and steric) mapping and molecular dynamics simulation, a set of receptor-ligand binding models and bio-affinity predictive models for rational design of more potent inhibitors of GLO I are established. 相似文献
30.